No Arabic abstract
The properties of condensed matter are determined by single-particle and collective excitations and their interactions. These quantum-mechanical excitations are characterized by an energy E and a momentum hbar k which are related through their dispersion E_k. The coupling of two excitations may lead to abrupt changes (kinks) in the slope of the dispersion. Such kinks thus carry important information about interactions in a many-body system. For example, kinks detected at 40-70 meV below the Fermi level in the electronic dispersion of high-temperature superconductors are taken as evidence for phonon or spin-fluctuation based pairing mechanisms. Kinks in the electronic dispersion at binding energies ranging from 30 to 800 meV are also found in various other metals posing questions about their origins. Here we report a novel, purely electronic mechanism yielding kinks in the electron dispersions. It applies to strongly correlated metals whose spectral function shows well separated Hubbard subbands and central peak as, for example, in transition metal-oxides. The position of the kinks and the energy range of validity of Fermi-liquid (FL) theory is determined solely by the FL renormalization factor and the bare, uncorrelated band structure. Angle-resolved photoemission spectroscopy (ARPES) experiments at binding energies outside the FL regime can thus provide new, previously unexpected information about strongly correlated electronic systems.
We investigate the origin of ubiquitous low energy kinks found in Angle Resolved Photoemission (ARPES) experiments in a variety of correlated matter. Such kinks are unexpected from weakly interacting electrons and hence identifying their origin should lead to fundamental insights in strongly correlated matter. We devise a protocol for extracting the kink momentum and energy from the experimental data which relies solely on the two asymptotic tangents of each dispersion curve, away from the feature itself. It is thereby insensitive to the different shapes of the kinks as seen in experiments. The body of available data is then analyzed using this method. We proceed to discuss two alternate theoretical explanations of the origin of the kinks. Some theoretical proposals invoke local Bosonic excitations (Einstein phonons or other modes with spin or charge character), located exactly at the energy of observed kinks, leading to a momentum independent self energy of the electrons. A recent alternate is the theory of extremely correlated Fermi liquids (ECFL). This theory predicts kinks in the dispersion arising from a momentum dependent self energy of correlated electrons. We present the essential results from both classes of theories, and identify experimental features that can help distinguish between the two mechanisms. The ECFL theory is found to be consistent with currently available data on kinks in the nodal direction of cuprate superconductors, but conclusive tests require higher resolution energy distribution curve data.
The idea of exciton condensation in solids was introduced in 1960s with the analogy to superconductivity in mind. While exciton supercurrents have been realized only in artificial quantum-well structures so far, the application of the concept of excitonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g., cold atoms physics. One of our goals is to provide a dictionary which would allow the reader to efficiently combine results obtained in these different fields.
Numerical simulations of strongly correlated electron systems suffer from the notorious fermion sign problem which has prevented progress in understanding if systems like the Hubbard model display high-temperature superconductivity. Here we show how the fermion sign problem can be solved completely with meron-cluster methods in a large class of models of strongly correlated electron systems, some of which are in the extended Hubbard model family and show s-wave superconductivity. In these models we also find that on-site repulsion can even coexist with a weak chemical potential without introducing sign problems. We argue that since these models can be simulated efficiently using cluster algorithms they are ideal for studying many of the interesting phenomena in strongly correlated electron systems.
We study the charge-density dynamics within the two-dimensional extended Hubbard model in the presence of long-range Coulomb interaction across the metal-insulator transition point. To take into account strong correlations we start from self-consistent extended dynamical mean-field theory and include non-local dynamical vertex corrections through a ladder approximation to the polarization operator. This is necessary to fulfill charge conservation and to describe plasmons in the correlated state. The calculated plasmon spectra are qualitatively different from those in the random-phase approximation: they exhibit a spectral density transfer and a renormalized dispersion with enhanced deviation from the canonical $sqrt{q}$-behavior. Both features are reminiscent of interaction induced changes found in single-electron spectra of strongly correlated systems.
We present magnetization, specific heat, and 27Al NMR investigations on YbFe2Al10 over a wide range in temperature and magnetic field. The magnetic susceptibility at low temperatures is strongly enhanced at weak magnetic fields, accompanied by a ln(T0/T) divergence of the low-T specific heat coefficient in zero field, which indicates a ground state of correlated electrons. From our hard X-ray photo emission spectroscopy (HAXPES) study, the Yb valence at 50 K is evaluated to be 2.38. The system displays valence fluctuating behavior in the low to intermediate temperature range, whereas above 400 K, Yb3+ carries a full and stable moment, and Fe carries a moment of about 3.1 mB. The enhanced value of the Sommerfeld Wilson ratio and the dynamic scaling of spin-lattice relaxation rate divided by T [27(1/T1T)] with static susceptibility suggests admixed ferromagnetic correlations. 27(1/T1T) simultaneously tracks the valence fluctuations from the 4f -Yb ions in the high temperature range and field dependent antiferromagnetic correlations among partially Kondo screened Fe 3d moments at low temperature, the latter evolve out of an Yb 4f admixed conduction band.