Do you want to publish a course? Click here

Rotating-slit scintigraphy using scintillating glass fibers: First results

97   0   0.0 ( 0 )
 Added by Giovanni. Zanella
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we propose to perform the scintigraphy of small organ using a rotating-slit collimator and a bundle of scintillating glass fibers, put in parallel with the slit and rotating with it. An intensified CCD, coupled to the end of the fibers, acquires an integrated image of the events per each rotation angle. The final image is computed by a back-projection procedure. The advantages of this method, with respect to conventional scintigraphy, are the improvement of the detection efficiency of one-two order of magnitude without counting rate limitations, the improvement of the spatial resolution, the elimination of the parallax error and the rejection of the spurious events, without energy analysis. Simulations and first experimental results are showed.



rate research

Read More

The light collection of several fiber configurations embedded in a box-shaped plastic scintillating counter was studied by scanning with minimum ionizing electrons. The light was read out by silicon photomultipliers at both ends. The light yield produced by the 855-MeV beam of the Mainz Microtron showed a strong dependence on the transverse distance from the beam position to the fibers. The observations were modeled by attributing the collection of indirect light inside of the counter and of direct light reaching a fiber to the total light yield. The light collection with fibers was compared to that of a scintillating counter without fibers. These studies were carried out within the development of plastic scintillating detectors as an active veto system for the DarkMESA electron beam-dump experiment that will search for light dark matter particles in the MeV mass range.
The neutron detection efficiency of a sampling calorimeter made of 1 mm diameter scintillating fibers embedded in a lead/bismuth structure has been measured at the neutron beam of the The Svedberg Laboratory at Uppsala. A significant enhancement of the detection efficiency with respect to a bulk organic scintillator detector with the same thickness is observed.
Quartz capillary tube/fibers have been filled with anthracene by a melt and vacuum inbibition process to fabricate a scintillating core fiber. Other polcyclic aromatic hydrocarbons(PAH), such as p-Terphenyl (pTP), stilbene or naphthalene are also well-suited to scintillating/shifting fiber cores. The resulting scintillating core with quartz cladding capillary fibers (250-750 micron cores) had a high specific light output when tested with muons (8 p.e. per MIP). These PAH core quartz capillary cladding scintillating/shifting optical fibers have the potential of high radiation resistance, fast response, and are applicable to many energy and intensity frontier experiments.
A Cryogenic Sapphire Oscillator has been implemented at 11.2 GHz using a low-vibration design pulse-tube cryocooler. Compared with a state-of-the-art liquid helium cooled CSO in the same laboratory, the square root Allan variance of their combined fractional frequency instability is $sigma_y = 1.4 times 10^{-15}tau^{-1/2}$ for integration times $1 < tau < 10$ s, dominated by white frequency noise. The minimum $sigma_y = 5.3 times 10^{-16}$ for the two oscillators was reached at $tau = 20$ s. Assuming equal contributions from both CSOs, the single oscillator phase noise $S_{phi} approx -96 ; dB ; rad^2/Hz$ at 1 Hz offset from the carrier.
The Argon Dark Matter experiment is a ton-scale double phase argon Time Projection Chamber designed for direct Dark Matter searches. It combines the detection of scintillation light together with the ionisation charge in order to discriminate the background (electron recoils) from the WIMP signals (nuclear recoils). After a successful operation on surface at CERN, the detector was recently installed in the underground Laboratorio Subterraneo de Canfranc, and the commissioning phase is ongoing. We describe the status of the installation and present first results from data collected underground with the detector filled with gas argon at room temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا