No Arabic abstract
We investigate the impact of mergers on the mass estimation of galaxy clusters using $N$-body + hydrodynamical simulation data. We estimate virial mass from these data and compare it with real mass. When the smaller subclusters mass is larger than a quarter of that of the larger one, virial mass can be larger than twice of the real mass. The results strongly depend on the observational directions, because of anisotropic velocity distribution of the member galaxies. We also make the X-ray surface brightness and spectroscopic-like temperature maps from the simulation data. The mass profile is estimated from these data on the assumption of hydrostatic equilibrium. In general, mass estimation with X-ray data gives us better results than virial mass estimation. The dependence upon observational directions is weaker than in case of virial mass estimation. When the system is observed along the collision axis, the projected mass tends to be underestimated. This fact should be noted especially when the virial and/or X-ray mass are compared with gravitational lensing results.
X-ray shocks and radio relics detected in the cluster outskirts are commonly interpreted as shocks induced by mergers of sub-clumps. We study the properties of merger shocks in merging galaxy clusters, using a set of cosmological simulations for the large-scale structure formation of the universe. As a representative case, we here focus on the simulated clusters that undergo almost head-on collisions with mass ratio $sim2$. Due to the turbulent nature of the intracluster medium, shock surfaces are not smooth, but composed of shocks with different Mach numbers. As the merger shocks expand outward from the core to the outskirts, the average Mach number, $left<M_sright>$, increases in time. We suggest that the shocks propagating along the merger axis could be manifested as X-ray shocks and/or radio relics. The kinetic energy through the shocks, $F_phi$, peaks at $sim1$ Gyr after their initial launching, or at $sim1-2$ Mpc from the core. Because of the Mach number dependent model adopted here for the cosmic ray (CR) acceleration efficiency, their CR-energy-weighted Mach number is higher with $left< M_s right>_{rm CR}sim3-4$, compared to the kinetic-energy-weighted Mach number, $left<M_sright>_{phi}sim2-3$. Most energetic shocks are to be found ahead of the lighter dark matter (DM) clump, while the heavier DM clump is located in the opposite side of clusters. Although our study is limited to the merger case considered, the results such as the means and variations of shock properties and their time evolution could be compared with the observed characteristics of merger shocks, constraining interpretations of relevant observations.
Centrally located diffuse radio emission has been observed in both merging and non-merging galaxy clusters. Depending on their morphology and size, we distinguish between giant radio haloes, which occur predominantly in merging clusters, and mini haloes, which are found in non-merging, cool-core clusters. Low-frequency sensitive observations are required to assess whether the emission discovered in these few cases is common in galaxy clusters or not. With this aim, we carried out a campaign of observations with the LOw Frequency ARay (LOFAR) in the frequency range 120 - 168 MHz of nine massive clusters selected from the textit{Planck} SZ catalogue, which had no sign of major mergers. In this paper, we discuss the results of the observations that have led to the largest cluster sample studied within the LOFAR Two-metre Sky Survey, and we present Chandra X-ray data used to investigate the dynamical state of the clusters, verifying that the clusters are currently not undergoing major mergers, and to search for traces of minor or off-axis mergers. We discover large-scale steep-spectrum emission around mini haloes in the cool-core clusters PSZ1G139 and RXJ1720, which is not observed around the mini halo in the non-cool-core cluster A1413. We also discover a new 570 kpc-halo in the non-cool-core cluster RXCJ0142. We derived new upper limits to the radio power for clusters in which no diffuse radio emission was found, and we discuss the implication of our results to constrain the cosmic-ray energy budget in the ICM. We conclude that radio emission in non-merging massive clusters is not common at the sensitivity level reached by our observations and that no clear connection with the cluster dynamical state is observed. Our results might indicate that the sloshing of a dense cool core could trigger particle acceleration on larger scales and generate steep-spectrum radio emission.
We present the first high resolution MHD simulation of cosmic-ray electron reacceleration by turbulence in cluster mergers. We use an idealised model for cluster mergers, combined with a numerical model for the injection, cooling and reacceleration of cosmic-ray electrons, to investigate the evolution of cluster scale radio emission in these objects. In line with theoretical expectations, we for the first time, show in a simulation that reacceleration of CRe has the potential to reproduce key observables of radio halos. In particular, we show that clusters evolve being radio loud or radio quiet, depending on their evolutionary stage during the merger. We thus recover the observed transient nature of radio halos. In the simulation the diffuse emission traces the complex interplay between spatial distribution of turbulence injected by the halo infall and the spatial distribution of the seed electrons to reaccelerate. During the formation and evolution of the halo the synchrotron emission spectra show the observed variety: from power-laws with spectral index of 1 to 1.3 to curved and ultra-steep spectra with index $> 1.5$.
Multi-band photometric and multi-object spectroscopic surveys of merging galaxy clusters allow for the characterization of the distributions of constituent dark matter and galaxy populations, constraints on the dynamics of the merging subclusters, and an understanding of galaxy evolution of member galaxies. We present deep photometric observations from Subaru/SuprimeCam and a catalog of $sim$5400 spectroscopic cluster members from Keck/DEIMOS across 29 merging galaxy clusters ranging in redshift from $z=0.07$ to $0.55$. The ensemble is compiled based on the presence of radio relics, which highlight cluster scale collisionless shocks in the intra-cluster medium. Together with the spectroscopic and photometric information, the velocities, timescales, and geometries of the respective merging events may be tightly constrained. In this preliminary analysis, the velocity distributions of 28 of the 29 clusters are shown to be well fit by single Gaussians. This indicates that radio relic mergers largely occur transverse to the line of sight and/or near apocenter. In this paper, we present our optical and spectroscopic surveys, preliminary results, and a discussion of the value of radio relic mergers for developing accurate dynamical models of each system.
Galaxy clusters exhibit a rich morphology during the early and intermediate stages of mass assembly, especially beyond their boundary. A classification scheme based on shapefinders deduced from the Minkowski functionals is examined to fully account for the morphological diversity of galaxy clusters, including relaxed and merging clusters, clusters fed by filamentary structures, and cluster-pair bridges. These configurations are conveniently treated with idealised geometric models and analytical formulae, some of which are novel. Examples from CLASH and LC$^2$ clusters and observed cluster-pair bridges are discussed.