No Arabic abstract
Galaxy clusters exhibit a rich morphology during the early and intermediate stages of mass assembly, especially beyond their boundary. A classification scheme based on shapefinders deduced from the Minkowski functionals is examined to fully account for the morphological diversity of galaxy clusters, including relaxed and merging clusters, clusters fed by filamentary structures, and cluster-pair bridges. These configurations are conveniently treated with idealised geometric models and analytical formulae, some of which are novel. Examples from CLASH and LC$^2$ clusters and observed cluster-pair bridges are discussed.
We use Minkowski Functionals (MF) to constrain a primordial non-Gaussian contribution to the CMB intensity field as observed in the 150 GHz and 145 GHz BOOMERanG maps from the 1998 and 2003 flights, respectively, performing for the first time a joint analysis of the two datasets. A perturbative expansion of the MF formulae in the limit of a weakly non-Gaussian field yields analytical formulae, derived by Hikage et al. (2006), which can be used to constrain the coupling parameter f_NL without the need for non-Gaussian simulations. We find -1020<f_NL<390 at 95% CL, significantly improving the previous constraints by De Troia et al. (2007) on the BOOMERanG 2003 dataset. These are the best f_NL limits to date for suborbital probes.
We investigate the impact of mergers on the mass estimation of galaxy clusters using $N$-body + hydrodynamical simulation data. We estimate virial mass from these data and compare it with real mass. When the smaller subclusters mass is larger than a quarter of that of the larger one, virial mass can be larger than twice of the real mass. The results strongly depend on the observational directions, because of anisotropic velocity distribution of the member galaxies. We also make the X-ray surface brightness and spectroscopic-like temperature maps from the simulation data. The mass profile is estimated from these data on the assumption of hydrostatic equilibrium. In general, mass estimation with X-ray data gives us better results than virial mass estimation. The dependence upon observational directions is weaker than in case of virial mass estimation. When the system is observed along the collision axis, the projected mass tends to be underestimated. This fact should be noted especially when the virial and/or X-ray mass are compared with gravitational lensing results.
We fit a functional form for a universal ICM entropy profile to the scaled entropy profiles of a catalogue of X-ray galaxy cluster outskirts results, which are all relaxed cool core clusters at redshift below 0.25. We also investigate the functional form suggested by Lapi et al. and Cavaliere et al. for the behaviour of the entropy profile in the outskirts and find it to fit the data well outside 0.3r200 . We highlight the discrepancy in the entropy profile behaviour in the outskirts between observations and the numerical simulations of Burns et al., and show that the entropy profile flattening due to gas clumping calculated by Nagai & Lau is insufficient to match observations, suggesting that gas clumping alone cannot be responsible for all of the entropy profile flattening in the cluster outskirts. The entropy profiles found with Suzaku are found to be consistent with ROSAT, XMM-Newton and Planck results.
We present cosmological constraints from measurements of the gas mass fraction, $f_{gas}$, for massive, dynamically relaxed galaxy clusters. Our data set consists of Chandra observations of 40 such clusters, identified in a comprehensive search of the Chandra archive, as well as high-quality weak gravitational lensing data for a subset of these clusters. Incorporating a robust gravitational lensing calibration of the X-ray mass estimates, and restricting our measurements to the most self-similar and accurately measured regions of clusters, significantly reduces systematic uncertainties compared to previous work. Our data for the first time constrain the intrinsic scatter in $f_{gas}$, $(7.4pm2.3)$% in a spherical shell at radii 0.8-1.2 $r_{2500}$, consistent with the expected variation in gas depletion and non-thermal pressure for relaxed clusters. From the lowest-redshift data in our sample we obtain a constraint on a combination of the Hubble parameter and cosmic baryon fraction, $h^{3/2}Omega_b/Omega_m=0.089pm0.012$, that is insensitive to the nature of dark energy. Combined with standard priors on $h$ and $Omega_b h^2$, this provides a tight constraint on the cosmic matter density, $Omega_m=0.27pm0.04$, which is similarly insensitive to dark energy. Using the entire cluster sample, extending to $z>1$, we obtain consistent results for $Omega_m$ and interesting constraints on dark energy: $Omega_Lambda=0.65^{+0.17}_{-0.22}$ for non-flat $Lambda$CDM models, and $w=-0.98pm0.26$ for flat constant-$w$ models. Our results are both competitive and consistent with those from recent CMB, SNIa and BAO data. We present constraints on models of evolving dark energy from the combination of $f_{gas}$ data with these external data sets, and comment on the possibilities for improved $f_{gas}$ constraints using current and next-generation X-ray observatories and lensing data. (Abridged)
This is the first in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Here we present a new, automated method for identifying relaxed clusters based on their morphologies in X-ray imaging data. While broadly similar to others in the literature, the morphological quantities that we measure are specifically designed to provide a fair basis for comparison across a range of data quality and cluster redshifts, to be robust against missing data due to point-source masks and gaps between detectors, and to avoid strong assumptions about the cosmological background and cluster masses. Based on three morphological indicators - Symmetry, Peakiness and Alignment - we develop the SPA criterion for relaxation. This analysis was applied to a large sample of cluster observations from the Chandra and ROSAT archives. Of the 361 clusters which received the SPA treatment, 57 (16 per cent) were subsequently found to be relaxed according to our criterion. We compare our measurements to similar estimators in the literature, as well as projected ellipticity and other image measures, and comment on trends in the relaxed cluster fraction with redshift, temperature, and survey selection method. Code implementing our morphological analysis will be made available on the web.