Do you want to publish a course? Click here

Ground-state configurations in ferromagnetic nanotori

92   0   0.0 ( 0 )
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnetization ground states are studied in toroidal nanomagnets. The energetics associated to the ferromagnetic, vortex and onion-like configurations are explicitly computed. The analysis reveals that the vortex appears to be the most prominent of such states, minimizing total energy in every torus with internal radius $rgtrsim10,{rm nm}$ (for Permalloy). For $rlesssim10,{rm nm}$ the vortex remains the most favorable pattern whenever $R/ell_{ex}gtrsim1.5$ ($R$ is the torus external radius and $ell_{ex}$ is the exchange length), being substituted by the ferromagnetic state whenever $R/ell_{ex}lesssim1.5$.



rate research

Read More

We model conducting pentagon chains with a multi orbital Hubbard model and prove that well below half filling exact ferromagnetic ground states appear. The rigorous method we use is based on the transformation of original hamiltonian into positive semidefinite form. This technique is independent of the spatial dimesion and does not require integrability of the model. The obtained ferromagnetism is connected to dispersionless bands but in a much broader sense than flat band ferromagnetism requires, where on every site a Hubbard term is present. In our case only a small percentage of, even randomly distributed, sites are only interacting.
117 - Zoran Ristivojevic 2009
We consider a thin superconducting film with a magnetic dot with permanent magnetization (normal to the film) placed on it by a method based on London-Maxwell equations. For sufficiently high dot magnetization a single vortex appears in the ground state. Further increase of magnetization is accompanied with the appearance of antivortices and more vortices in the film. We study analytically conditions for the appearance of a vortex--antivortex pair for a range of parameters. The phase diagram with diversity of vortex--antivortex states is calculated numerically. When appear in the ground state, antivortices are at distances comparable to the dot radius. For not too large dot radii the total vorticity in the ground state is predominantly zero or one. Magnetic field due to the dot and vortices everywhere in space is calculated analytically.
170 - F. Freitag , J. Trbovic , M. Weiss 2011
Bilayer graphene bears an eight-fold degeneracy due to spin, valley and layer symmetry, allowing for a wealth of broken symmetry states induced by magnetic or electric fields, by strain, or even spontaneously by interaction. We study the electrical transport in clean current annealed suspended bilayer graphene. We find two kind of devices. In bilayers of type B1 the eight-fold zero-energy Landau level (LL) is partially lifted above a threshold field revealing an insulating nu=0 quantum Hall state at the charge neutrality point (CNP). In bilayers of type B2 the LL lifting is full and a gap appears in the differential conductance even at zero magnetic field, suggesting an insulating spontaneously broken symmetry state. Unlike B1, the minimum conductance in B2 is not exponentially suppressed, but remains finite with a value G < e^2/h even in a large magnetic field. We suggest that this phase of B2 is insulating in the bulk and bound by compressible edge states.
80 - E. Golias , I. Kumberg , I. Gelen 2020
We present evidence for an ultrafast optically induced ferromagnetic alignment of antiferromagnetic Mn in Co/Mn multilayers. We observe the transient ferromagnetic signal at the arrival of the pump pulse at the Mn L$_3$ resonance using x-ray magnetic circular dichroism in reflectivity. The timescale of the effect is comparable to the duration of the excitation and occurs before the magnetization in Co is quenched. Theoretical calculations point to the imbalanced population of Mn unoccupied states caused by the Co interface for the emergence of this transient ferromagnetic state.
53 - R. Combescot 2019
We investigate the trion binding energy in a three-dimensional semiconductor, with bare Coulomb interaction between charges, and effective mass approximation for the electron and hole dispersion relations. This is done by making use of a previously proposed exact method for the three-body problem. The calculations cover the complete range of electron-to-hole mass ratio. We find a perfect agreement with existing variational calculations. Investigating the small and large mass ratio regimes, we build a three parameters interpolating formula for the trion binding energy $E_b(r)$ in terms of the exciton binding energy, where $r$ is the electron to exciton mass ratio. This formula $E_b(r)=0.71347-0.11527 ,r -0.18580, sqrt{1-r},$, in atomic units, is in full agreement, within our precision, with our numerical results over the complete range of mass ratio.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا