Do you want to publish a course? Click here

Ground state configurations of vortices in superconducting film with magnetic dot

107   0   0.0 ( 0 )
 Added by Zoran Ristivojevic
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a thin superconducting film with a magnetic dot with permanent magnetization (normal to the film) placed on it by a method based on London-Maxwell equations. For sufficiently high dot magnetization a single vortex appears in the ground state. Further increase of magnetization is accompanied with the appearance of antivortices and more vortices in the film. We study analytically conditions for the appearance of a vortex--antivortex pair for a range of parameters. The phase diagram with diversity of vortex--antivortex states is calculated numerically. When appear in the ground state, antivortices are at distances comparable to the dot radius. For not too large dot radii the total vorticity in the ground state is predominantly zero or one. Magnetic field due to the dot and vortices everywhere in space is calculated analytically.



rate research

Read More

Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.
Elucidating the nature of the magnetism of a high-temperature superconductor is crucial for establishing its pairing mechanism. The parent compounds of the cuprate and iron-pnictide superconductors exhibit Neel and stripe magnetic order, respectively. However, FeSe, the structurally simplest iron-based superconductor, shows nematic order (Ts = 90 K), but not magnetic order in the parent phase, and its magnetic ground state is intensely debated. Here, we report inelastic neutron-scattering experiments that reveal both stripe and Neel spin fluctuations over a wide energy range at 110 K. On entering the nematic phase, a substantial amount of spectral weight is transferred from the Neel to the stripe spin fluctuations. Moreover, the total fluctuating magnetic moment of FeSe is ~ 60% larger than that in the iron pnictide BaFe2As2. Our results suggest that FeSe is a novel S = 1 nematic quantum-disordered paramagnet interpolating between the Neel and stripe magnetic instabilities.
Many practical applications of high T$_c$ superconductors involve layered materials and magnetic fields applied on an arbitrary direction with respect to the layers. When the anisotropy is very large, Cooper pair currents can circulate either within or perpendicular to the layers. Thus, tilted magnetic fields lead to intertwined lattices of Josephson and Abrikosov vortices, with quantized circulation across and within layers, respectively. Transport in such intertwined lattices has been studied in detail, but direct observation and manipulation of vortices remains challenging. Here we present magnetic force microscopy experiments in tilted magnetic fields in the extremely quasi-two dimensional superconductor $Bi_{2}Sr_{2}CaCu_{2}O_{8}$. We trigger Abrikosov vortex motion in between Josephson vortices, and find that Josephson vortices in different layers can be brought on top of each other. Our measurements suggest that intertwined lattices in tilted magnetic fields can be intrinsically easy to manipulate thanks to the mutual interaction between Abrikosov and Josephson vortices.
The nonsymmorphic Zr$_{2}$Ir alloy is a possible topological semimetal candidate material and as such may be part of an exotic class of superconductors. Zr$_{2}$Ir is a superconductor with a transition temperature of 7.4 K with critical fields of 19.6(3) mT and 3.79(3) T, as determined by heat capacity and magnetisation. Zero field muon spin relaxation measurements show that time-reversal symmetry is preserved in these materials. The specific heat and transverse field muon spin rotation measurements rule out any possibility to have a nodal or anisotropic superconducting gap, revealing a conventional s-wave nature in the superconducting ground state. Therefore, this system is found to be conventional nonsymmorphic superconductor, with time-reversal symmetry being preserved and an isotropic superconducting gap.
We consider an asymmetric 0-pi Josephson junction consisting of 0 and pi regions of different lengths L_0 and L_pi. As predicted earlier this system can be described by an effective sine-Gordon equation for the spatially averaged phase psi so that the effective current-phase relation of this system includes a emph{negative} second harmonic ~sin(2 psi). If its amplitude is large enough, the ground state of the junction is doubly degenerate psi=pmvarphi, where varphi depends on the amplitudes of the first and second harmonics. We study the behavior of such a junction in an applied magnetic field H and demonstrate that H induces an additional term ~H cos(psi) in the effective current-phase relation. This results in a non-trivial ground state emph{tunable} by magnetic field. The dependence of the critical current on H allows for revealing the ground state experimentally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا