Do you want to publish a course? Click here

Jerky elasticity: Avalanches and the martensitic transition in Cu74.08Al23.13Be2.79 shape-memory alloy

201   0   0.0 ( 0 )
 Added by Wilfried Schranz WS
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Jerky elasticity was observed by dynamical mechanical analyzer measurements in a single crystal of the shape memory alloy Cu74.08Al23.13Be2.79. Jerks appear as spikes in the dissipation of the elastic response function and relate to the formation of avalanches during the transformation between the austenite and the martensite phase. The statistics of the avalanches follows the predictions of avalanche criticality P(E) proportional to E-epsilon where P(E) is the probability of finding an avalanche with the energy E. This result reproduces, within experimental uncertainties, previous findings by acoustic emission techniques.



rate research

Read More

Elastic neutron-scattering, inelastic x-ray scattering, specific-heat, and pressure-dependent electrical transport measurements have been made on single crystals of AuZn and Au_{0.52}Zn_{0.48} above and below their martensitic transition temperatures (T_M=64K and 45K, respectively). In each composition, elastic neutron scattering detects new commensurate Bragg peaks (modulation) appearing at Q = (1.33,0.67,0) at temperatures corresponding to each samples T_M. Although the new Bragg peaks appear in a discontinuous manner in the Au_{0.52}Zn_{0.48} sample, they appear in a continuous manner in AuZn. Surprising us, the temperature dependence of the AuZn Bragg peak intensity and the specific-heat jump near the transition temperature are in favorable accord with a mean-field approximation. A Landau-theory-based fit to the pressure dependence of the transition temperature suggests the presence of a critical endpoint in the AuZn phase diagram located at T_M*=2.7K and p*=3.1GPa, with a quantum saturation temperature theta_s=48.3 +/- 3.7K.
The origin of incommensurate structural modulation in Ni-Mn based Heusler type magnetic shape memory alloys (MSMAs) is still an unresolved issue inspite of intense focus on this due to its role in the magnetic field induced ultra-high strains. In the archetypal MSMA Ni2MnGa, the observation of non-uniform displacement of atoms from their mean positions in the modulated martensite phase, premartensite phase and charge density wave as well as the presence of phason broadening of satellite peaks have been taken in support of the electronic instability model linked with a soft acoustic phonon. We present here results of a combined high resolution synchrotron x-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) study on Ni2Mn1.4In0.6 using (3+1)D superspace group approach, which reveal not only uniform atomic displacements in the modulated structure of the martensite phase with physically acceptable ordered magnetic moments in the antiferromagnetic phase at low temperatures but also the absence of any premartensite phase and phason broadening of the satellite peaks. Our HRTEM studies and first principles calculations of the ground state also support uniform atomic displacements predicted by powder diffraction studies. All these observations suggest that the structural modulation in the martensite phase of Ni2Mn1.4In0.6 MSMA can be explained in terms of the adaptive phase model. The present study underlines the importance of superspace group analysis using complimentary SXRPD and NPD in understanding the physics of the origin of modulation as well as the magnetic and the modulated ground states of the Heusler type MSMAs. Our work also highlights the fact that the mechanism responsible for the origin of modulated structure in different Ni-Mn based MSMAs may not be universal and it must be investigated thoroughly in different alloy compositions.
An inelastic neutron scattering study of the lattice dynamics of the martensite phase of the ferromagnetic shape memory alloy, Ni2MnGa, reveals the presence of well-defined phasons associated with the charge density wave (CDW) resulting from Fermi surface (FS) nesting. The velocity and the temperature dependence of the phason are measured as well as the anomalous [110]-TA2 phonon.
140 - S. M. Shapiro , G. Xu , B. L. Winn 2007
Ti50 Pd50-xCrx is a high temperature shape memory alloy with a martensitic transformation temperature strongly dependent on the Cr composition. Prior to the transformation a premartensitic phase is present with an incommensurate modulated cubic lattice with wave vector of q0=(0.22, 0.22, 0). The temperature dependence of the diffuse scattering in the cubic phase is measured as a function temperature for x=6.5, 8.5, and 10 at. %. The lattice dynamics has been studied and reveals anomalous temperature and q-dependence of the [110]-TA2 transverse phonon branch. The phonon linewidth is broad over the entire Brillouin zone and increases with decreasing temperature, contrary to the behavior expected for anharmonicity. No anomaly is observed at q0. The results are compared with first principles calculation of the phonon structure.
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni$_2$MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا