Do you want to publish a course? Click here

Adaptive modulation in Ni2Mn1.4In0.6 magnetic shape memory Heusler alloy

93   0   0.0 ( 0 )
 Added by Sanjay Singh
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of incommensurate structural modulation in Ni-Mn based Heusler type magnetic shape memory alloys (MSMAs) is still an unresolved issue inspite of intense focus on this due to its role in the magnetic field induced ultra-high strains. In the archetypal MSMA Ni2MnGa, the observation of non-uniform displacement of atoms from their mean positions in the modulated martensite phase, premartensite phase and charge density wave as well as the presence of phason broadening of satellite peaks have been taken in support of the electronic instability model linked with a soft acoustic phonon. We present here results of a combined high resolution synchrotron x-ray powder diffraction (SXRPD) and neutron powder diffraction (NPD) study on Ni2Mn1.4In0.6 using (3+1)D superspace group approach, which reveal not only uniform atomic displacements in the modulated structure of the martensite phase with physically acceptable ordered magnetic moments in the antiferromagnetic phase at low temperatures but also the absence of any premartensite phase and phason broadening of the satellite peaks. Our HRTEM studies and first principles calculations of the ground state also support uniform atomic displacements predicted by powder diffraction studies. All these observations suggest that the structural modulation in the martensite phase of Ni2Mn1.4In0.6 MSMA can be explained in terms of the adaptive phase model. The present study underlines the importance of superspace group analysis using complimentary SXRPD and NPD in understanding the physics of the origin of modulation as well as the magnetic and the modulated ground states of the Heusler type MSMAs. Our work also highlights the fact that the mechanism responsible for the origin of modulated structure in different Ni-Mn based MSMAs may not be universal and it must be investigated thoroughly in different alloy compositions.



rate research

Read More

An inelastic neutron scattering study of the lattice dynamics of the martensite phase of the ferromagnetic shape memory alloy, Ni2MnGa, reveals the presence of well-defined phasons associated with the charge density wave (CDW) resulting from Fermi surface (FS) nesting. The velocity and the temperature dependence of the phason are measured as well as the anomalous [110]-TA2 phonon.
We report an improved reversibility of magnetostriction and inverse magnetocaloric effect (MCE) for the magnetic shape-memory Heusler alloy Ni$_{1.8}$Mn$_{1.8}$In$_{0.4}$. We show that the magnetostriction and MCE crucially depends on the geometrical compatibility of the austenite and martensite phases. Detailed information on the compatibility of both phases has been obtained from the transformation matrix calculated from x-ray diffraction data. The uniqueness of the lattice parameters results in an improved reversibility of the magnetostriction and the MCE. In the thermal hysteresis region of the martensitic transformation, the maximum relative length change is 0.3% and the adiabatic temperature change $Delta T_{ad}approx -10$ K in pulsed magnetic fields. Our results reveal that the approach of geometric compatibility will allow one to design materials with reversible magnetostriction and reversible inverse MCE at a first-order magnetostructural phase transition in shape-memory Heusler alloys.
The large magnetocaloric effect (MCE) observed in Ni-Mn based shape-memory Heusler alloys put them forward to use in magnetic refrigeration technology. It is associated with a first-order magnetostructural (martensitic) phase transition. We conducted a comprehensive study of the MCE for the off-stoichiometric Heusler alloy Ni$_{2.2}$Mn$_{0.8}$Ga in the vicinity of its first-order magnetostructural phase transition. We found a reversible MCE under repeated magnetic field cycles. The reversible behavior can be attributed to the small thermal hysteresis of the martensitic phase transition. Based on the analysis of our detailed temperature dependent X-ray diffraction data, we demonstrate the geometric compatibility of the cubic austenite and tetragonal martensite phases. This finding directly relates the reversible MCE behavior to an improved geometric compatibility condition between cubic austenite and tetragonal martensite phases. The approach will help to design shape-memory Heusler alloys with a large reversible MCE taking advantage of the first-order martensitic phase transition.
Magnetic shape memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic and structural order. To study these correlations we use time resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni$_2$MnGa film and reveal a set of timescales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300~fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320~fs, which is comparable to the quenching of the structural modulation.
The premartensite phase of shape memory and magnetic shape memory alloys (MSMAs) is believed to be a precursor state of the martensite phase with preserved austenite phase symmetry. The thermodynamic stability of the premartensite phase and its relation to the martensitic phase is still an unresolved issue, even though it is critical to the understanding of the functional properties of MSMAs. We present here unambiguous evidence for macroscopic symmetry breaking leading to robust Bain distortion in the premartensite phase of 10% Pt substituted Ni2MnGa. We show that the robust Bain distorted premartensite (T2) phase results from another premartensite (T1) phase with preserved cubic-like symmetry through an isostructural phase transition. The T2 phase finally transforms to the martensite phase with additional Bain distortion on further cooling. Our results demonstrate that the premartensite phase should not be considered as a precursor state with the preserved symmetry of the cubic austenite phase.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا