We present experimental schemes that allow to study the entanglement classes of all symmetric states in multiqubit photonic systems. In addition to comparing the presented schemes in efficiency, we will highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
We introduce two operational entanglement measures which are applicable for arbitrary multipartite (pure or mixed) states. One of them characterizes the potentiality of a state to generate other states via local operations assisted by classical communication (LOCC) and the other the simplicity of generating the state at hand. We show how these measures can be generalized to two classes of entanglement measures. Moreover, we compute the new measures for pure few-partite systems and use them to characterize the entanglement contained in a three-qubit state. We identify the GHZ- and the W-state as the most powerful pure three-qubit states regarding state manipulation.
We present a physical setup with which it is possible to produce arbitrary symmetric long-lived multiqubit entangled states in the internal ground levels of photon emitters, including the paradigmatic GHZ and W states. In the case of three emitters, where each tripartite entangled state belongs to one of two well-defined entanglement classes, we prove a one-to-one correspondence between well-defined sets of experimental parameters, i.e., locally tunable polarizer orientations, and multiqubit entanglement classes inside the symmetric subspace.
Employing the Pauli matrices, we have constructed a set of operators, which can be used to distinguish six inequivalent classes of entanglement under SLOCC (stochastic local operation and classical communication) for three-qubit pure states. These operators have very simple structure and can be obtained from the Mermins operator with suitable choice of directions. Moreover these operators may be implemented in an experiment to distinguish the types of entanglement present in a state. We show that the measurement of only one operator is sufficient to distinguish GHZ class from rest of the classes. It is also shown that it is possible to detect and classify other classes by performing a small number of measurements. We also show how to construct such observables in any basis. We also consider a few mixed states to investigate the usefulness of our operators. Furthermore, we consider the teleportation scheme of Lee et al. (Phys. Rev. A 72, 024302 (2005)) and show that the partial tangles and hence teleportation fidelity can be measured. We have also shown that these partial tangles can also be used to classify genuinely entangled state, biseparable state and separable state.
In a previous paper we examined a geometric measure of entanglement based on the minimum distance between the entangled target state of interest and the space of unnormalized product states. Here we present a detailed study of this entanglement measure for target states with a large degree of symmetry. We obtain analytic solutions for the extrema of the distance function and solve for the Hessian to show that, up to the action of trivial symmetries, the solutions correspond to local minima of the distance function. In addition, we show that the conditions that determine the extremal solutions for general target states can be obtained directly by parametrizing the product states via their Schmidt decomposition.
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the GHZ and symmetric Dicke state. We also show how the gate can be incorporated into extended graph state networks, and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.