Do you want to publish a course? Click here

Geometrical entanglement of highly symmetric multipartite states and the Schmidt decomposition

195   0   0.0 ( 0 )
 Added by Gabor Kunstatter
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a previous paper we examined a geometric measure of entanglement based on the minimum distance between the entangled target state of interest and the space of unnormalized product states. Here we present a detailed study of this entanglement measure for target states with a large degree of symmetry. We obtain analytic solutions for the extrema of the distance function and solve for the Hessian to show that, up to the action of trivial symmetries, the solutions correspond to local minima of the distance function. In addition, we show that the conditions that determine the extremal solutions for general target states can be obtained directly by parametrizing the product states via their Schmidt decomposition.



rate research

Read More

We generalize the Schmidt-correlated states to multipartite systems. The related equivalence under SLOCC, the separability, entanglement witness, entanglement measures of negativity, concurrence and relative entropy are investigated in detail for the generalized Schmidt-correlated states.
In the standard geometric approach, the entanglement of a pure state is $sin^2theta$, where $theta$ is the angle between the entangled state and the closest separable state of products of normalised qubit states. We consider here a generalisation of this notion by considering separable states that consist of products of unnormalised states of different dimension. The distance between the target entangled state and the closest unnormalised product state can be interpreted as a measure of the entanglement of the target state. The components of the closest product state and its norm have an interpretation in terms of, respectively, the eigenvectors and eigenvalues of the reduced density matrices arising in the Schmidt decomposition of the state vector. For several cases where the target state has a large degree of symmetry, we solve the system of equations analytically, and look specifically at the limit where the number of qubits is large.
In the standard geometric approach to a measure of entanglement of a pure state, $sin^2theta$ is used, where $theta$ is the angle between the state to the closest separable state of products of normalized qubit states. We consider here a generalization of this notion to separable states consisting of products of unnormalized states of different dimension. In so doing, the entanglement measure $sin^2theta$ is found to have an interpretation as the distance between the state to the closest separable state. We also find the components of the closest separable state and its norm have an interpretation in terms of, respectively, the eigenvectors and eigenvalues of the reduced density matrices arising in the Schmidt decomposition of the state vector.
We present experimental schemes that allow to study the entanglement classes of all symmetric states in multiqubit photonic systems. In addition to comparing the presented schemes in efficiency, we will highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.
286 - G. R. Jin , S. Luo , Y. C. Liu 2010
Based upon standard angular momentum theory, we develop a framework to investigate polarization squeezing and multipartite entanglement of a quantum light field. Both mean polarization and variances of the Stokes parameters are obtained analytically, with which we study recent observation of triphoton states [L. K. Shalm {it et al}, Nature textbf{457}, 67 (2009)]. Our results show that the appearance of maximally entangled NOON states accompanies with a flip of mean polarization and can be well understood in terms of quantum Fisher information.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا