Do you want to publish a course? Click here

Nonequilibrium dynamics of a stochastic model of anomalous heat transport

125   0   0.0 ( 0 )
 Added by Stefano Lepri
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of covariances in a chain of harmonic oscillators with conservative noise in contact with two stochastic Langevin heat baths. The noise amounts to random collisions between nearest-neighbour oscillators that exchange their momenta. In a recent paper, [S Lepri et al. J. Phys. A: Math. Theor. 42 (2009) 025001], we have studied the stationary state of this system with fixed boundary conditions, finding analytical exact expressions for the temperature profile and the heat current in the thermodynamic (continuum) limit. In this paper we extend the analysis to the evolution of the covariance matrix and to generic boundary conditions. Our main purpose is to construct a hydrodynamic description of the relaxation to the stationary state, starting from the exact equations governing the evolution of the correlation matrix. We identify and adiabatically eliminate the fast variables, arriving at a continuity equation for the temperature profile T(y,t), complemented by an ordinary equation that accounts for the evolution in the bulk. Altogether, we find that the evolution of T(y,t) is the result of fractional diffusion.



rate research

Read More

60 - J. Cividini , A. Kundu , A. Miron 2016
A framework for studying the effect of the coupling to the heat bath in models exhibiting anomalous heat conduction is described. The framework is applied to the harmonic chain with momentum exchange model where the non-trivial temperature profile is calculated. In this approach one first uses the hydrodynamic (HD) equations to calculate the equilibrium current-current correlation function in large but finite chains, explicitly taking into account the BCs resulting from the coupling to the heat reservoirs. Making use of a linear response relation, the anomalous conductivity exponent $alpha$ and an integral equation for the temperature profile are obtained. The temperature profile is found to be singular at the boundaries with an exponent which varies continuously with the coupling to the heat reservoirs expressed by the BCs. In addition, the relation between the harmonic chain and a system of noninteracting L{e}vy walkers is made explicit, where different BCs of the chain correspond to different reflection coefficients of the L{e}vy particles.
We investigate the impact of noise on a two-dimensional simple paradigmatic piecewise-smooth dynamical system. For that purpose we consider the motion of a particle subjected to dry friction and coloured noise. The finite correlation time of the noise provides an additional dimension in phase space, a nontrivial probability current, and thus establishes a proper nonequilibrium regime. Furthermore, the finite noise correlation time allows for the study of stick-slip phenomena which show up as a singular component in the stationary probability density. Analytic insight can be provided by application of the unified coloured noise approximation, developed by Jung and Hanggi (Phys. Rev. A 35, 4464 (R) (1987)). The analysis of probability currents and a closer look at power spectral densities underpin the observed stick-slip transitions which are related with a critical value of the noise correlation time.
344 - Rui-Zhen Huang , Shuai Yin 2019
In this paper we study the driven critical dynamics in the three-state quantum chiral clock model. This is motivated by a recent experiment, which verified the Kibble-Zurek mechanism and the finite-time scaling in a reconfigurable one-dimensional array of $^{87}$Rb atoms with programmable interactions. This experimental model shares the same universality class with the quantum chiral clock model and has been shown to possess a nontrivial non-integer dynamic exponent $z$. Besides the case of changing the transverse field as realized in the experiment, we also consider the driven dynamics under changing the longitudinal field. For both cases, we verify the finite-time scaling for a non-integer dynamic exponent $z$. Furthermore, we determine the critical exponents $beta$ and $delta$ numerically for the first time. We also investigate the dynamic scaling behavior including the thermal effects, which are inevitably involved in experiments. From a nonequilibrium dynamic point of view, our results strongly support that there is a direct continuous phase transition between the ordered phase and the disordered phase. Also, we show that the method based on the finite-time scaling theory provides a promising approach to determine the critical point and critical properties.
We study a model of self propelled particles exhibiting run and tumble dynamics on lattice. This non-Brownian diffusion is characterised by a random walk with a finite persistence length between changes of direction, and is inspired by the motion of bacteria such as E. coli. By defining a class of models with multiple species of particle and transmutation between species we can recreate such dynamics. These models admit exact analytical results whilst also forming a counterpart to previous continuum models of run and tumble dynamics. We solve the externally driven non-interacting and zero-rang
155 - E. Lippiello , M. Baiesi , 2014
We use a relationship between response and correlation function in nonequilibrium systems to establish a connection between the heat production and the deviations from the equilibrium fluctuation-dissipation theorem. This scheme extends the Harada-Sasa formulation [Phys. Rev. Lett. 95, 130602 (2005)], obtained for Langevin equations in steady states, as it also holds for transient regimes and for discrete jump processes involving small entropic changes. Moreover, a general formulation includes two times and the new concepts of two-time work, kinetic energy, and of a two-time heat exchange that can be related to a nonequilibrium effective temperature. Numerical simulations of a chain of anharmonic oscillators and of a model for a molecular motor driven by ATP hydrolysis illustrate these points.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا