Do you want to publish a course? Click here

Temperature profile and boundary conditions in an anomalous heat transport model

61   0   0.0 ( 0 )
 Added by Julien Cividini
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

A framework for studying the effect of the coupling to the heat bath in models exhibiting anomalous heat conduction is described. The framework is applied to the harmonic chain with momentum exchange model where the non-trivial temperature profile is calculated. In this approach one first uses the hydrodynamic (HD) equations to calculate the equilibrium current-current correlation function in large but finite chains, explicitly taking into account the BCs resulting from the coupling to the heat reservoirs. Making use of a linear response relation, the anomalous conductivity exponent $alpha$ and an integral equation for the temperature profile are obtained. The temperature profile is found to be singular at the boundaries with an exponent which varies continuously with the coupling to the heat reservoirs expressed by the BCs. In addition, the relation between the harmonic chain and a system of noninteracting L{e}vy walkers is made explicit, where different BCs of the chain correspond to different reflection coefficients of the L{e}vy particles.



rate research

Read More

We study the dynamics of covariances in a chain of harmonic oscillators with conservative noise in contact with two stochastic Langevin heat baths. The noise amounts to random collisions between nearest-neighbour oscillators that exchange their momenta. In a recent paper, [S Lepri et al. J. Phys. A: Math. Theor. 42 (2009) 025001], we have studied the stationary state of this system with fixed boundary conditions, finding analytical exact expressions for the temperature profile and the heat current in the thermodynamic (continuum) limit. In this paper we extend the analysis to the evolution of the covariance matrix and to generic boundary conditions. Our main purpose is to construct a hydrodynamic description of the relaxation to the stationary state, starting from the exact equations governing the evolution of the correlation matrix. We identify and adiabatically eliminate the fast variables, arriving at a continuity equation for the temperature profile T(y,t), complemented by an ordinary equation that accounts for the evolution in the bulk. Altogether, we find that the evolution of T(y,t) is the result of fractional diffusion.
We study a two dimensional Ising model between thermostats at different temperatures. By applying the recently introduced KQ dynamics, we show that the system reaches a steady state with coexisting phases transversal to the heat flow. The relevance of such complex states on thermodynamic or geometrical observables is investigated. In particular, we study energy, magnetization and metric properties of interfaces and clusters which, in principle, are sensitive to local features of configurations. With respect to equilibrium states, the presence of the heat flow amplifies the fluctuations of both thermodynamic and geometrical observables in a domain around the critical energy. The dependence of this phenomenon on various parameters (size, thermal gradient, interaction) is discussed also with reference to other possible diffusive models.
We determine the spectra of a class of quantum spin chains of Temperley-Lieb type by utilizing the concept of Temperley-Lieb equivalence with the S=1/2 XXZ chain as a reference system. We consider open boundary conditions and in particular periodic boundary conditions. For both types of boundaries the identification with XXZ spectra is performed within isomorphic representations of the underlying Temperley-Lieb algebra. For open boundaries the spectra of these models differ from the spectrum of the associated XXZ chain only in the multiplicities of the eigenvalues. The periodic case is rather different. Here we show how the spectrum is obtained sector-wise from the spectra of globally twisted XXZ chains. As a spin-off, we obtain a compact formula for the degeneracy of the momentum operator eigenvalues. Our representation theoretical results allow for the study of the thermodynamics by establishing a TL-equivalence at finite temperature and finite field.
Fluctuations of energy and heat are investigated during the relaxation following the instantaneous temperature quench of an extended system. Results are obtained analytically for the Gaussian model and for the large $N$ model quenched below the critical temperature $T_C$. The main finding is that fluctuations exceeding a critical threshold do condense. Though driven by a mechanism similar to that of Bose-Einstein condensation, this phenomenon is an out-of-equilibrium feature produced by the breaking of energy equipartition occurring in the transient regime. The dynamical nature of the transition is illustrated by phase diagrams extending in the time direction.
We consider a system of two Brownian particles (say A and B), coupled to each other via harmonic potential of stiffness constant $k$. Particle-A is connected to two heat baths of constant temperatures $T_1$ and $T_2$, and particle-B is connected to a single heat bath of a constant temperature $T_3$. In the steady state, the total entropy production for both particles obeys the fluctuation theorem. We compute the total entropy production due to one of the particles called as partial or apparent entropy production, in the steady state for a time segment $tau$. When both particles are weakly interacting with each other, the fluctuation theorem for partial and apparent entropy production is studied. We find a significant deviation from the fluctuation theorem. The analytical results are also verified using numerical simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا