Do you want to publish a course? Click here

The magnetic properties of the Garnet and glass forms of Mn3Al2Si3O12

547   0   0.0 ( 0 )
 Added by Tomasz Klimczuk
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic susceptibilities and specific heats of the crystalline garnet and glass forms of Mn3Al2Si3O12 are reported. This allows a direct comparison of the degree of magnetic frustration of the triangle-based garnet lattice and the structurally disordered solid at the same composition for isotropic spin 5/2 Mn^2+ (3d^5). The results show that the glass phase shows more pronounced signs of magnetic frustration than the crystalline phase. Through comparison of the specific heats of Ca3Al2Si3O12 (grossular) and Mn3Al2Si3O12 (spessartine) garnets, information is provided concerning the anomalous extra specific heat in the latter material.



rate research

Read More

323 - Johannes Mendil 2019
We report on the structure, magnetization, magnetic anisotropy, and domain morphology of ultrathin yttrium iron garnet (YIG)/Pt films with thickness ranging from 3 to 90 nm. We find that the saturation magnetization is close to the bulk value in the thickest films and decreases towards low thickness with a strong reduction below 10 nm. We characterize the magnetic anisotropy by measuring the transverse spin Hall magnetoresistance as a function of applied field. Our results reveal strong easy plane anisotropy fields of the order of 50-100 mT, which add to the demagnetizing field, as well as weaker in-plane uniaxial anisotropy ranging from 10 to 100 $mu$T. The in-plane easy axis direction changes with thickness, but presents also significant fluctuations among samples with the same thickness grown on the same substrate. X-ray photoelectron emission microscopy reveals the formation of zigzag magnetic domains in YIG films thicker than 10 nm, which have dimensions larger than several 100 $mu$m and are separated by achiral N{e}el-type domain walls. Smaller domains characterized by interspersed elongated features are found in YIG films thinner than 10 nm.
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedral structure with the R3c space-group from 10K to room temperature (RT). Neutron diffraction data suggest that some of the Cu ions have a Cu3+ state in these compounds. The substitution of Mn by Cu affects the Mn-O bond length and Mn-O-Mn bond angle resulting from the minimization of the distortion of the MnO6 octahedron. Resistivity measurements show that a metal to insulator transition occurs for the x more than 0.15 samples. The x = 0.15 sample shows the highest MR(_80%), which might result from the co-existence of Cu3+/Cu2+ and the dilution effect of Cu-doping on the double exchange interaction.
Ti-substituted perovskites, La0.7Sr0.3Mn1-xTixO3, with x between 0 to 0.20, were investigated by neutron diffraction, magnetization, electric resistivity, and magnetoresistance (MR) measurements. All samples show a rhombohedral structure (space group R3c) from 10 K to room temperature. At room temperature, the cell parameters a, c and the unit cell volume increase with increasing Ti content. However, at 10 K, the cell parameter a has a maximum value for x = 0.10, and decreases for x greater than 0.10, while the unit cell volume remains nearly constant for x greater than 0.10. The average (Mn,Ti)-O bond length increases up to x=0.15, and the (Mn,Ti)-O-(Mn,Ti) bond angle decreases with increasing Ti content to its minimum value at x=0.15 at room temperature. Below the Curie temperature T_C, the resistance exhibits metallic behavior for the x _ 0.05 samples. A metal (semiconductor) to insulator transition is observed for the x_ 0.10 samples. A peak in resistivity appears below T_C for all samples, and shifts to a lower temperature as x increases. The substitution of Mn by Ti decreases the 2p-3d hybridization between O and Mn ions, reduces the bandwidth W, and increases the electron-phonon coupling. Therefore, the TC shifts to a lower temperature and the resistivity increases with increasing Ti content. A field-induced shift of the resistivity maximum occurs at x less than or equal to 0.10. The maximum MR effect is about 70% for La0.7Sr0.3Mn0.8Ti0.2O3. The separation of TC and the resistivity maximum temperature Tmax enhances the MR effect in these compounds due to the weak coupling between the magnetic ordering and the resistivity as compared with La0.7Sr0.3MnO3.
This work reports on the synthesis of CrO2 thin films by atmospheric pressure CVD using chromium trioxide (CrO3) and oxygen. Highly oriented (100) CrO2 films containing highly oriented (0001) Cr2O3 were grown onto Al2O3(0001) substrates. Films display a sharp magnetic transition at 375 K and a saturation magnetization of 1.92 Bohr magnetons per f.u., close to the bulk value of 2 Bohr magnetons per f.u. for the CrO2. Keywords: Chromium dioxide (CrO2), Atmospheric pressure CVD, Spintronics.
Fourier transform infrared (FTIR) spectra and X-ray photoelectron spectra (XPS) of Nd doped phosphate glasses have been studied before and after gamma irradiation in order to find the behavior of chemical bonds, which decide the structural changes in the glass samples. IR absorption spectra of these glasses are found dominated mainly by the characteristics phosphate groups, water (OH) present in the glass network as well as on the composition of glass matrix. The effects of gamma irradiation are observed in the form of bond breaking and possible re-arrangement of the bonding in the glass. Energy dispersive X-ray spectroscopy (EDX) and XPS measurements show changes in the relative concentration of elements; particularly decrease in the concentration of oxygen in the glass samples after gamma irradiation, a possible source of oxygen vacancies. The decrease in the asymmetry in O 1s spectra after gamma irradiation indicates towards decrease in the concentration of bridging oxygen as a result of P-O-P bond breaking. Asymmetric profile of Nd 3d5/2peak after gamma irradiation is found to be due to conversion of Nd3+ to Nd2+ in the glass matrix.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا