Do you want to publish a course? Click here

Structural Parameters of Seven SMC Intermediate-Age and Old Star Clusters

170   0   0.0 ( 0 )
 Added by Katharina Glatt
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present structural parameters for the seven intermediate-age and old star clusters NGC121, Lindsay 1, Kron 3, NGC339, NGC416, Lindsay 38, and NGC419 in the Small Magellanic Cloud. We fit King profiles and Elson, Fall, and Freeman profiles to both surface-brightness and star count data taken with the Advanced Camera for Surveys aboard the Hubble Space Telescope. Clusters older than 1 Gyr show a spread in cluster core radii that increases with age, while the youngest clusters have relatively compact cores. No evidence for post core collapse clusters was found. We find no correlation between core radius and distance from the SMC center, although consistent with other studies of dwarf galaxies, some relatively old and massive clusters have low densities. The oldest SMC star cluster, the only globular NGC121, is the most elliptical object of the studied clusters. No correlation is seen between ellipticity and distance from the SMC center. The structures of these massive intermediate-age (1-8 Gyr) SMC star clusters thus appear to primarily result from internal evolutionary processes.



rate research

Read More

We present a photometric analysis of the star clusters Lindsay 1, Kron 3, NGC339, NGC416, Lindsay 38, and NGC419 in the Small Magellanic Cloud (SMC), observed with the Hubble Space Telescope Advanced Camera for Surveys (ACS) in the F555W and F814W filters. Our color magnitude diagrams (CMDs) extend ~3.5 mag deeper than the main-sequence turnoff points, deeper than any previous data. Cluster ages were derived using three different isochrone models: Padova, Teramo, and Dartmouth, which are all available in the ACS photometric system. Fitting observed ridgelines for each cluster, we provide a homogeneous and unique set of low-metallicity, single-age fiducial isochrones. The cluster CMDs are best approximated by the Dartmouth isochrones for all clusters, except for NGC419 where the Padova isochrones provided the best fit. The CMD of NGC419 shows several main-sequence turn-offs, which belong to the cluster and to the SMC field. We thus derive an age range of 1.2-1.6 Gyr for NGC419. Interestingly, our intermediate-age star clusters have a metallicity spread of ~0.6 dex, which demonstrates that the SMC does not have a smooth, monotonic age-metallicity relation. We find an indication for centrally concentrated blue straggler star candidates in NGC416, while for the other clusters these are not present. Using the red clump magnitudes, we find that the closest cluster, NGC419 (~50kpc), and the farthest cluster, Lindsay 38 (~67kpc), have a relative distance of ~17kpc, which confirms the large depth of the SMC.
We analyze our accurate kinematical data for the old clusters in the inner regions of M31. These velocities are based on high S/N Hectospec data (Caldwell et al 2010). The data are well suited for analysis of M31s inner regions because we took particular care to correct for contamination by unresolved field stars from the disk and bulge in the fibers. The metal poor clusters show kinematics which are compatible with a pressure-supported spheroid. The kinematics of metal-rich clusters, however, argue for a disk population. In particular the innermost region (inside 2 kpc) shows the kinematics of the x2 family of bar periodic orbits, arguing for the existence of an inner Lindblad resonance in M31.
This is the second paper in our series about the search for multiple populations in Magellanic Cloud star clusters using the Hubble Space Telescope. Here we report the detection of multiple stellar populations in the colour-magnitude diagrams of the intermediate-age clusters Lindsay 1, NGC 416 and NGC 339. With ages between 6.0 and 7.5 Gyr, these clusters are the youngest ones in which chemical abundance spreads have been detected so far. This confirms that the appearance of multiple populations is not restricted to only ancient globular clusters, but may also be a common feature in clusters as young as 6 Gyr. Our results are in agreement with a recent spectroscopic study of Lindsay 1. We found that the fraction of enriched stars in NGC 416 is ~45% whereas it is ~25% in NGC 339 and ~36% in Lindsay 1. Similar to NGC 121, these fractions are lower than the average value for globular clusters in the Milky Way.
Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project, which aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for the future ones. Our pilot study presents spatially integrated K-band spectra of three old (>10 Gyr) and metal poor ([Fe/H]~-1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H]~-0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO(2-0) absorption features. The Na I index decreases with the increasing age and decreasing metallicity of the clusters. The Dco index, used to measure the 12CO(2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction with the predictions of the stellar population models of Maraston (2005). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age >2 Gyr we find Dco index measurements consistent with the model predictions.
64 - S. Saracino 2019
The discovery of star-to-star abundance variations (a.k.a. multiple populations - MPs) within globular clusters (GCs), which are generally not found in the field or in lower mass open clusters, has led to a search for the unique property of GCs that allow them to host this phenomenon. Recent studies have shown that MPs are not limited to the ancient GCs but are also found in massive clusters with ages down to (at least) 2 Gyr. This finding is important for understanding the physics of the MP phenomenon, as these young clusters can provide much stronger constraints (e.g. on potential age spreads within the clusters) than older ones. However, a direct comparison between ancient GCs and intermediate clusters has not yet been possible due to the different filters adopted in their studies. Here we present new HST UV photometry of the 7.5 Gyr, massive SMC cluster, Lindsay 1, in order to compare its pseudo colour-colour diagram to that of Galactic GCs. We find that they are almost identical and conclude that the MPs phenomenon is the same, regardless of cluster age and host galaxy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا