No Arabic abstract
Photonic circuits can be much faster than their electronic counterparts, but they are difficult to miniaturize below the optical wavelength scale. Nanoscale photonic circuits based on surface plasmon polaritons (SPs) are a promising solution to this problem because they can localize light below the diffraction limit. However, there is a general tradeoff between the localization of an SP and the efficiency with which it can be detected with conventional far-field optics. Here we describe a new all-electrical SP detection technique based on the near-field coupling between guided plasmons and a nanowire field-effect transistor. We use the technique to electrically detect the plasmon emission from an individual colloidal quantum dot coupled to an SP waveguide. Our detectors are both nanoscale and highly efficient (0.1 electrons/plasmon), and a plasmonic gating effect can be used to amplify the signal even higher (up to 50 electrons/plasmon). These results enable new on-chip optical sensing applications and are a key step towards dark optoplasmonic nanocircuits in which SPs can be generated, manipulated, and detected without involving far-field radiation.
Plasmons --the collective oscillations of electrons in conducting materials-- play a pivotal role in nanophotonics because of their ability to couple electronic and photonic degrees of freedom. In particular, plasmons in graphene --the atomically thin carbon material-- offer strong spatial confinement and long lifetimes, accompanied by extraordinary optoelectronic properties derived from its peculiar electronic band structure. Understandably, this material has generated great expectations for its application to enhanced integrated devices. However, an efficient scheme for detecting graphene plasmons remains a challenge. Here we show that extremely compact graphene nanostructures are capable of realizing on-chip electrical detection of single plasmons. Specifically, we predict a twofold increase in the electrical current across a graphene nanostructure junction caused by the excitation of a single plasmon. This effect, which is due to the increase in electron temperature following plasmon decay, should persist during a picosecond time interval characteristic of electron-gas relaxation. We further show that a broad spectral detection range is accessible either by electrically doping the junction or by varying the size of the nanostructure. The proposed graphene plasmometer could find application as a basic component of future optics-free integrated nanoplasmonic devices.
Optical excitation and subsequent decay of graphene plasmons can produce a significant increase in charge-carrier temperature. An efficient method to convert this temperature elevation into a measurable electrical signal at room temperature can enable important mid-infrared applications such as thermal sensing and imaging in ubiquitous mobile devices. However, as appealing as this goal might be, it is still unrealized due to the modest thermoelectric coefficient and weak temperature-dependence of carrier transport in graphene. Here, we demonstrate mid-infrared graphene detectors consisting of arrays of plasmonic resonators interconnected by quasi one-dimensional nanoribbons. Localized barriers associated with disorder in the nanoribbons produce a dramatic temperature dependence of carrier transport, thus enabling the electrical detection of plasmon decay in the nearby graphene resonators. We further realize a device with a subwavelength footprint of 5*5 um2 operating at 12.2 um, an external responsivity of 16 mA/W, a low noise-equivalent power of 1.3 nW/Hz1/2 at room temperature, and an operational frequency potentially beyond gigahertz. Importantly, our device is fabricated using large-scale graphene and possesses a simple two-terminal geometry, representing an essential step toward the realization of on-chip graphene mid-infrared detector arrays.
It is shown that thermally excited plasmon-polariton modes can strongly mediate, enhance and emph{tune} the near-field radiation transfer between two closely separated graphene sheets. The dependence of near-field heat exchange on doping and electron relaxation time is analyzed in the near infra-red within the framework of fluctuational electrodynamics. The dominant contribution to heat transfer can be controlled to arise from either interband or intraband processes. We predict maximum transfer at low doping and for plasmons in two graphene sheets in resonance, with orders-of-magnitude enhancement (e.g. $10^2$ to $10^3$ for separations between $0.1mu m$ to $10nm$) over the Stefan-Boltzmann law, known as the far field limit. Strong, tunable, near-field transfer offers the promise of an externally controllable thermal switch as well as a novel hybrid graphene-graphene thermoelectric/thermophotovoltaic energy conversion platform.
We investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogenous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient non-radiative Forster resonant energy transfer (FRET) from QDs into MoS2 and prove that modest gate-induced variation in the excitonic absorption of MoS2 lead to large (~500%) changes in the FRET rate. This, in turn, allows for up to ~75% electrical modulation of QD photoluminescence intensity. The hybrid QD/MoS2 devices operate within a small voltage range, allow for continuous modification of the QD photoluminescence intensity, and can be used for selective tuning of QDs emitting in the visible-IR range.
Combining the quantum optical properties of single-photon emitters with the strong near-field interactions available in nanophotonic and plasmonic systems is a powerful way of creating quantum manipulation and metrological functionalities. The ability to actively and dynamically modulate emitter-environment interactions is of particular interest in this regard. While thermal, mechanical and optical modulation have been demonstrated, electrical modulation has remained an outstanding challenge. Here we realize fast, all-electrical modulation of the near-field interactions between a nanolayer of erbium emitters and graphene, by in-situ tuning the Fermi energy of graphene. We demonstrate strong interactions with a >1,000-fold increased decay rate for 25% of the emitters, and electrically modulate these interactions with frequencies up to 300 kHz - orders of magnitude faster than the emitters radiative decay (100 Hz). This constitutes an enabling platform for integrated quantum technologies, opening routes to quantum entanglement generation by collective plasmon emission or photon emission with controlled waveform.