Do you want to publish a course? Click here

Language Diversity across the Consonant Inventories: A Study in the Framework of Complex Networks

185   0   0.0 ( 0 )
 Added by Animesh Mukherjee
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

n this paper, we attempt to explain the emergence of the linguistic diversity that exists across the consonant inventories of some of the major language families of the world through a complex network based growth model. There is only a single parameter for this model that is meant to introduce a small amount of randomness in the otherwise preferential attachment based growth process. The experiments with this model parameter indicates that the choice of consonants among the languages within a family are far more preferential than it is across the families. The implications of this result are twofold -- (a) there is an innate preference of the speakers towards acquiring certain linguistic structures over others and (b) shared ancestry propels the stronger preferential connection between the languages within a family than across them. Furthermore, our observations indicate that this parameter might bear a correlation with the period of existence of the language families under investigation.



rate research

Read More

Recent research has shown that language and the socio-cognitive phenomena associated with it can be aptly modeled and visualized through networks of linguistic entities. However, most of the existing works on linguistic networks focus only on the local properties of the networks. This study is an attempt to analyze the structure of languages via a purely structural technique, namely spectral analysis, which is ideally suited for discovering the global correlations in a network. Application of this technique to PhoNet, the co-occurrence network of consonants, not only reveals several natural linguistic principles governing the structure of the consonant inventories, but is also able to quantify their relative importance. We believe that this powerful technique can be successfully applied, in general, to study the structure of natural languages.
We study the self-organization of the consonant inventories through a complex network approach. We observe that the distribution of occurrence as well as cooccurrence of the consonants across languages follow a power-law behavior. The co-occurrence network of consonants exhibits a high clustering coefficient. We propose four novel synthesis models for these networks (each of which is a refinement of the earlier) so as to successively match with higher accuracy (a) the above mentioned topological properties as well as (b) the linguistic property of feature economy exhibited by the consonant inventories. We conclude by arguing that a possible interpretation of this mechanism of network growth is the process of child language acquisition. Such models essentially increase our understanding of the structure of languages that is influenced by their evolutionary dynamics and this, in turn, can be extremely useful for building future NLP applications.
Speech sounds of the languages all over the world show remarkable patterns of cooccurrence. In this work, we attempt to automatically capture the patterns of cooccurrence of the consonants across languages and at the same time figure out the nature of the force leading to the emergence of such patterns. For this purpose we define a weighted network where the consonants are the nodes and an edge between two nodes (read consonants) signify their co-occurrence likelihood over the consonant inventories. Through this network we identify communities of consonants that essentially reflect their patterns of co-occurrence across languages. We test the goodness of the communities and observe that the constituent consonants frequently occur in such groups in real languages also. Interestingly, the consonants forming these communities reflect strong correlations in terms of their features, which indicate that the principle of feature economy acts as a driving force towards community formation. In order to measure the strength of this force we propose an information theoretic definition of feature economy and show that indeed the feature economy exhibited by the consonant communities are substantially better than those if the consonant inventories had evolved just by chance.
Pre-trained language models have been applied to various NLP tasks with considerable performance gains. However, the large model sizes, together with the long inference time, limit the deployment of such models in real-time applications. Typical approaches consider knowledge distillation to distill large teacher models into small student models. However, most of these studies focus on single-domain only, which ignores the transferable knowledge from other domains. We argue that training a teacher with transferable knowledge digested across domains can achieve better generalization capability to help knowledge distillation. To this end, we propose a Meta-Knowledge Distillation (Meta-KD) framework to build a meta-teacher model that captures transferable knowledge across domains inspired by meta-learning and use it to pass knowledge to students. Specifically, we first leverage a cross-domain learning process to train the meta-teacher on multiple domains, and then propose a meta-distillation algorithm to learn single-domain student models with guidance from the meta-teacher. Experiments on two public multi-domain NLP tasks show the effectiveness and superiority of the proposed Meta-KD framework. We also demonstrate the capability of Meta-KD in both few-shot and zero-shot learning settings.
We examine a naming game with two agents trying to establish a common vocabulary for n objects. Such efforts lead to the emergence of language that allows for an efficient communication and exhibits some degree of homonymy and synonymy. Although homonymy reduces the communication efficiency, it seems to be a dynamical trap that persists for a long, and perhaps indefinite, time. On the other hand, synonymy does not reduce the efficiency of communication, but appears to be only a transient feature of the language. Thus, in our model the role of synonymy decreases and in the long-time limit it becomes negligible. A similar rareness of synonymy is observed in present natural languages. The role of noise, that distorts the communicated words, is also examined. Although, in general, the noise reduces the communication efficiency, it also regroups the words so that they are more evenly distributed within the available verbal space.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا