Do you want to publish a course? Click here

Sensitivity on Earth Core and Mantle densities using Atmospheric Neutrinos

101   0   0.0 ( 0 )
 Added by Ofelia Pisanti
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutrino radiography may provide an alternative tool to study the very deep structures of the Earth. Though these measurements are unable to resolve the fine density layer features, nevertheless the information which can be obtained are independent and complementary to the more conventional seismic studies. The aim of this paper is to assess how well the core and mantle averaged densities can be reconstructed through atmospheric neutrino radiography. We find that about a 2% sensitivity for the mantle and 5% for the core could be achieved for a ten year data taking at an underwater km^3 Neutrino Telescope. This result does not take into account systematics related to the details of the experimental apparatus.



rate research

Read More

Martian atmospheric neon (Ne) has been detected by Viking and also found as trapped gas in Martian meteorites, though its abundance and isotopic composition have not been well determined. Because the timescale of Ne loss via atmospheric escape estimated from recent measurements with MAVEN is short (0.6--1 $times$ 10$^8$ years), the abundance and isotope composition of Martian atmospheric Ne reflect recent atmospheric gas supply mostly from volcanic degassing. Thus, it can serve as a probe for the volatile content of the interior. Here we show that the tentatively-informed atmospheric Ne abundance suggests recent active volcanism and the mantle being richer in Ne than Earths mantle today by more than a factor of 5--80. The estimated mantle Ne abundance requires efficient solar nebular gas capture or accretion of Ne-rich materials such as solar-wind-implanted dust in the planet formation stage, both of which provide important constraints on the abundance of other volatile elements in the interior and the accretion history of Mars. More precise determination of atmospheric Ne abundance and isotopic composition by in situ analysis or Mars sample return is crucial for distinguishing the possible origins of Ne.
The rotational evolution of Mercurys mantle and its core under conservative and dissipative torques is important for understanding the planets spin state. Dissipation results from tides and viscous, magnetic and topographic core--mantle interactions. The dissipative core--mantle torques take the system to an equilibrium state wherein both spins are fixed in the frame precessing with the orbit, and in which the mantle and core are differentially rotating. This equilibrium exhibits a mantle spin axis that is offset from the Cassini state by larger amounts for weaker core--mantle coupling for all three dissipative core--mantle coupling mechanisms, and the spin axis of the core is separated farther from that of the mantle, leading to larger differential rotation. The relatively strong core--mantle coupling necessary to bring the mantle spin axis to its observed position close to the Cassini state is not obtained by any of the three dissipative core--mantle coupling mechanisms. For a hydrostatic ellipsoidal core--mantle boundary, pressure coupling dominates the dissipative effects on the mantle and core positions, and dissipation together with pressure coupling brings the mantle spin solidly to the Cassini state. The core spin goes to a position displaced from that of the mantle by about 3.55 arcmin nearly in the plane containing the Cassini state. With the maximum viscosity considered of $ usim 15.0,{rm cm^2/s}$ if the coupling is by the circulation through an Ekman boundary layer or $ usim 8.75times 10^5,{rm cm^2/s}$ for purely viscous coupling, the core spin lags the precessing Cassini plane by 23 arcsec, whereas the mantle spin lags by only 0.055 arcsec. Larger, non hydrostatic values of the CMB ellipticity also result in the mantle spin at the Cassini state, but the core spin is moved closer to the mantle spin.
The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earths mantle preserves ancient (or primordial) heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earths mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.
The Earths core formation process has decisive effect in the chemical differentiation between the Earths core and its mantle. Here, we propose a new core formation model which is caused by a special giant impact. This model suggests that the impactors core can be kept intact by its own sticky mantle under appropriate impacting conditions and let it merge into the targets core without contact with the targets mantle. We call this special giant impact that caused the new core formation mode as glue ball impact model (GBI). By simulating hundreds of giant impacts with the sizes from planetesimals to planets, the conditions that can lead to GBI have been found out. If with small impact angle (i.e., less than 20 degree), small impact velocity and small impactors mass but larger than 0.07 Mearth, there is a good chance to produce a GBI at the final stage of the Earths accretion. We find that it will be much easier to have GBIs at the late stage of the Earths accretion rather than at the early stage of it. The GBI model will pose a great challenge to many problems between the equilibrium of Earths core and mantle. It provides an additional source for the excess of highly siderophile elements in the Earths mantle and also brings excessive lithophile elements to the Earths core. The GBI model may shed light on the study of Moon-formation and chemical differentiations of the pro-Earth.
We present limits on sterile neutrino mixing using 4,438 live-days of atmospheric neutrino data from the Super-Kamiokande experiment. We search for fast oscillations driven by an eV$^2$-scale mass splitting and for oscillations into sterile neutrinos instead of tau neutrinos at the atmospheric mass splitting. When performing both these searches we assume that the sterile mass splitting is large, allowing $sin^2(Delta m^2 L/4E)$ to be approximated as $0.5$, and we assume that there is no mixing between electron neutrinos and sterile neutrinos ($|U_{e4}|^2 = 0$). No evidence of sterile oscillations is seen and we limit $|U_{mu4}|^2$ to less than 0.041 and $|U_{tau4}|^2$ to less than 0.18 for $Delta m^2 > 0.8$ eV$^2$ at the 90% C.L. in a 3+1 framework. The approximations that can be made with atmospheric neutrinos allow these limits to be easily applied to 3+N models, and we provide our results in a generic format to allow comparisons with other sterile neutrino models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا