Do you want to publish a course? Click here

Mars atmospheric neon suggests volatile-rich primitive mantle

110   0   0.0 ( 0 )
 Added by Hiroyuki Kurokawa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Martian atmospheric neon (Ne) has been detected by Viking and also found as trapped gas in Martian meteorites, though its abundance and isotopic composition have not been well determined. Because the timescale of Ne loss via atmospheric escape estimated from recent measurements with MAVEN is short (0.6--1 $times$ 10$^8$ years), the abundance and isotope composition of Martian atmospheric Ne reflect recent atmospheric gas supply mostly from volcanic degassing. Thus, it can serve as a probe for the volatile content of the interior. Here we show that the tentatively-informed atmospheric Ne abundance suggests recent active volcanism and the mantle being richer in Ne than Earths mantle today by more than a factor of 5--80. The estimated mantle Ne abundance requires efficient solar nebular gas capture or accretion of Ne-rich materials such as solar-wind-implanted dust in the planet formation stage, both of which provide important constraints on the abundance of other volatile elements in the interior and the accretion history of Mars. More precise determination of atmospheric Ne abundance and isotopic composition by in situ analysis or Mars sample return is crucial for distinguishing the possible origins of Ne.

rate research

Read More

Neutrino radiography may provide an alternative tool to study the very deep structures of the Earth. Though these measurements are unable to resolve the fine density layer features, nevertheless the information which can be obtained are independent and complementary to the more conventional seismic studies. The aim of this paper is to assess how well the core and mantle averaged densities can be reconstructed through atmospheric neutrino radiography. We find that about a 2% sensitivity for the mantle and 5% for the core could be achieved for a ten year data taking at an underwater km^3 Neutrino Telescope. This result does not take into account systematics related to the details of the experimental apparatus.
The energy associated with giant impacts is large enough to generate global magma oceans during Earths accretion. However, geochemical evidence requiring a terrestrial magma ocean is scarce. Here we present evidence for at least two separate magma ocean outgassing episodes on Earth based on the ratio of primordial 3He to 22Ne in the present-day mantle. We demonstrate that the depleted mantle 3He/22Ne ratio is at least 10 while a more primitive mantle reservoir has a 3He/22Ne ratio of 2.3 to 3. The 3He/22Ne ratios of the mantle reservoirs are higher than possible sources of terrestrial volatiles, including the solar nebula ratio of 1.5. Therefore, a planetary process must have raised the mantles 3He/22Ne ratio. We show that long-term plate tectonic cycling is incapable of raising the mantle 3He/22Ne ratio and may even lower it. However, ingassing of a gravitationally accreted nebular atmosphere into a magma ocean on the proto-Earth explains the 3He/22Ne and 20Ne/22Ne ratios of the primitive mantle reservoir. Increasing the mantle 3He/22Ne ratio to a value of 10 in the depleted mantle requires at least two episodes of atmospheric blow-off and magma ocean outgassing associated with giant impacts during subsequent terrestrial accretion. The preservation of a low 3He/22Ne ratio in a primitive reservoir sampled by plumes suggests that the later giant impacts, including the Moon-forming giant impact, did not generate a whole mantle magma ocean. Atmospheric loss episodes associated with giant impacts provide an explanation for Earths subchondritic C/H, N/H, and Cl/F elemental ratios while preserving chondritic isotopic ratios. If so, a significant proportion of terrestrial water and potentially other major volatiles were accreted prior to the last giant impact, otherwise the fractionated elemental ratios would have been overprinted by the late veneer.
Ozone is an important radiative trace gas in the Earths atmosphere. The presence of ozone can significantly influence the thermal structure of an atmosphere, and by this e.g. cloud formation. Photochemical studies suggest that ozone can form in carbon dioxide-rich atmospheres. We investigate the effect of ozone on the temperature structure of simulated early Martian atmospheres. With a 1D radiative-convective model, we calculate temperature-pressure profiles for a 1 bar carbon dioxide atmosphere. Ozone profiles are fixed, parameterized profiles. We vary the location of the ozone layer maximum and the concentration at this maximum. The maximum is placed at different pressure levels in the upper and middle atmosphere (1-10 mbar). Results suggest that the impact of ozone on surface temperatures is relatively small. However, the planetary albedo significantly decreases at large ozone concentrations. Throughout the middle and upper atmospheres, temperatures increase upon introducing ozone due to strong UV absorption. This heating of the middle atmosphere strongly reduces the zone of carbon dioxide condensation, hence the potential formation of carbon dioxide clouds. For high ozone concentrations, the formation of carbon dioxide clouds is inhibited in the entire atmosphere. In addition, due to the heating of the middle atmosphere, the cold trap is located at increasingly higher pressures when increasing ozone. This leads to wetter stratospheres hence might increase water loss rates on early Mars. However, increased stratospheric H2O would lead to more HOx, which could efficiently destroy ozone. This result emphasizes the need for consistent climate-chemistry calculations to assess the feedback between temperature structure, water content and ozone chemistry. Furthermore, convection is inhibited at high ozone amounts, leading to a stably stratified atmosphere.
Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {mu}m effective radius during northern summer and a 2 {mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{deg}. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Plutos geological activity[1,2]. Composed of molecular nitrogen, methane, and carbon monoxide ices[3], but dominated by N2-ice, this ice layer is organized into cells or polygons, typically ~10-40 km across, that resemble the surface manifestation of solid state convection[1,2]. Here we report, based on available rheological measurements[4], that solid layers of N2 ice approximately greater than 1 km thick should convect for estimated present-day heat flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-km-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of N2-ice viscosity implies that the SP ice layer convects in the so-called sluggish lid regime[5], a unique convective mode heretofore not definitively observed in the Solar System. Average surface horizontal velocities of a few cm/yr imply surface transport or renewal times of ~500,000 years, well under the 10 Myr upper limit crater retention age for Sputnik Planum[2]. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help explain the high albedos of some of them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا