No Arabic abstract
The development and validation against experimental results of a new gasoline surrogate complex kinetic mechanism is presented in this paper. The surrogate fuel is a ternary mixture of n heptane, iso octane and toluene. The full three components mechanism is based on existing n heptane/iso octane (gasoline PRF) and toluene mechanisms which were modified and coupled for the purpose of this work. Mechanism results are compared against available experimental data from the literature. Simulations with the PRF plus toluene mechanism show that its behavior is in agreement with experimental results for most of the tested settings. These include a wide variety of thermodynamic conditions and fuel proportions in experimental configurations such as HCCI engine experiments, rapid compression machines, a shock tube and a jet stirred reactor.
Butanol, an alcohol which can be produced from biomass sources, has received recent interest as an alternative to gasoline for use in spark ignition engines and as a possible blending compound with fossil diesel or biodiesel. Therefore, the autoignition of the four isomers of butanol (1-butanol, 2-butanol, iso-butanol, and tert-butanol) has been experimentally studied at high temperatures in a shock tube and a kinetic mechanism for description of their high-temperature oxidation has been developed. Ignition delay times for butanol/oxygen/argon mixtures have been measured behind reflected shock waves at temperatures and pressures ranging from approximately 1200 to 1800 K and 1 to 4 bar. Electronically excited OH emission and pressure measurements were used to determine ignition delay times. A detailed kinetic mechanism has been developed to describe the oxidation of the butanol isomers and validated by comparison to the shock tube measurements. Reaction flux and sensitivity analysis indicate that the consumption of 1 butanol and iso-butanol, the most reactive isomers, takes place primarily by H-atom abstraction resulting in the formation of radicals, the decomposition of which yields highly reactive branching agents, H-atoms and OH radicals. Conversely, the consumption of tert butanol and 2-butanol, the least reactive isomers, takes place primarily via dehydration, resulting in the formation of alkenes, which lead to resonance stabilized radicals with very low reactivity. To our knowledge, the ignition delay measurements and oxidation mechanism presented here for 2-butanol, iso-butanol, and tert butanol are the first of their kind..
Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.
Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.
Recently a new group of two dimensional (2D) materials, originating from the group V elements (pnictogens), has gained global attention owing to their outstanding properties.
We study the initial stages of homogeneous melting of a hexagonal ice crystal at coexistence and at moderate superheating. Our trajectory-based computer simulation approach provides a comprehensive picture of the events that lead to melting; from the initial accumulation of 5+7 defects, via the formation of L-D and interstitial-vacancy pairs, to the formation of a liquid nucleus. Of the different types of defects that we observe to be involved in melting, a particular kind of 5+7 type defect (type 5) plays a prominent role as it often forms prior to the formation of the initial liquid nucleus and close to the site where the nucleus forms. Hence, like other solids, ice homogeneously melts via the prior accumulation of defects.