Do you want to publish a course? Click here

Environmental Stability of Bismuthene: Oxidation Mechanism and Structural Stability of 2D Pnictogens

65   0   0.0 ( 0 )
 Added by Andrey Kistanov
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently a new group of two dimensional (2D) materials, originating from the group V elements (pnictogens), has gained global attention owing to their outstanding properties.



rate research

Read More

Boron carbide is a ceramic material with unique properties widely used in numerous, including armor, applications. Its mechanical properties, mechanism of compression, and limits of stability are of both scientific and practical value. Here, we report the behavior of the stoichiometric boron carbide B13C2 studied on single crystals up to 68 GPa. As revealed by synchrotron X-ray diffraction, B13C2 maintains its crystal structure and does not undergo phase transitions. Accurate measurements of the unit cell and B12 icosahedra volumes as a function of pressure led to conclusion that they reduce similarly upon compression that is typical for covalently bonded solids. A comparison of the compressional behavior of B13C2 with that of alpha-B, gamma-B, and B4C showed that it is determined by the types of bonding involved in the course of compression. Neither molecular-like nor inversed-molecular-like solid behavior upon compression was detected that closes a long-standing scientific dispute.
The presence in the graphyne sheets of a variable amount of sp2/sp1 atoms, which can be transformed into sp3-like atoms by covalent binding with one or two fluorine atoms, respectively, allows one to assume the formation of fulorinated graphynes (fluorographynes) with variable F/C stoichiometry. Here, employing DFT band structure calculations, we examine a series of fluorographynes, and the trends in their stability, structural and electronic properties have been discussed as depending on their stoichiometry: from C2F3 (F/C= 1.5) to C4F7 (F/C= 1.75).
The unique optoelectronic properties of black phosphorus (BP) have triggered great interest in its applications in areas not fulfilled by other layered materials (LMs). However, its poor stability (fast degradation, i.e. <<1 h for monolayers) under ambient conditions restricts its practical application. We demonstrate here, by an experimental-theoretical approach, that the incorporation of nitrogen molecules (N2) into the BP structure results in a relevant improvement of its stability in air, up to 8 days without optical degradation signs. Our strategy involves the generation of defects (phosphorus vacancies) by electron-beam irradiation, followed by their healing with N2 molecules. As an additional route, N2 plasma treatment is presented as an alternative for large area application. Our first principles calculations elucidate the mechanisms involved in the nitrogen incorporation as well as on the stabilization of the modified BP, which corroborates with our experimental observations. This stabilization approach can be applied in the processing of BP, allowing for its use in environmentally stable van der Waals heterostructures with other LMs as well as in optoelectronic and wearable devices.
First-principles calculations have become a powerful tool to exclude the Edisonian approach in search of novel 2d materials. However, no universal first-principles criteria to examine the realizability of hypothetical 2d materials have been established in the literature yet. Because of this, and since the calculations are always performed in an artificial simulation environment, one can unintentionally study compounds that do not exist in the experiments. Although investigations of physics and chemistry of unrealizable materials can provide some fundamental knowledge, the discussion of their applications can mislead experimentalists for years and increase the gap between experimental and theoretical research. By analyzing energy convex hull, phonon spectra, and structure evolution during ab initio molecular dynamics simulations for a range of synthesized and recently proposed 2d materials, we construct energy, phonon, and dynamic stability filters which need to be satisfied before proposing novel 2d compounds. We demonstrate the power of the suggested filters for several selected 2d systems, revealing that some of them cannot be ever realized experimentally.
309 - Lei Guo , Gao Xu , Gang Tang 2020
In recent years, organic-inorganic hybrid perovskites have attracted wide attention due to their excellent optoelectronic properties in the application of optoelectronic devices. In the manufacturing process of perovskite solar cells, perovskite films inevitably have residual stress caused by non-stoichiometry components and the external load. However, their effects on the structural stability and photovoltaic performance of perovskite solar cells are still not clear. In this work, we investigated the effects of external strain on the structural stability and optoelectronic properties of tetragonal MAPbI3 by using the first-principles calculations. We found that the migration barrier of I- ion increases in the presence of compressive strain and decreases with tensile strain, indicating that the compressive strain can enhance the structural stability of halide perovskites. In addition, the light absorption and electronic properties of MAPbI3 under compressive strain are also improved. The variations of the band gap under triaxial and biaxial strains are consistent within a certain range of strain, resulting from the fact that the band edge positions are mainly influenced by the Pb-I bond in the equatorial plane. Our results provide useful guidance for realizing the commercial applications of MAPbI3-based perovskite solar cells.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا