Do you want to publish a course? Click here

Topological Quantum Computing with Read-Rezayi States

546   0   0.0 ( 0 )
 Added by Layla Hormozi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which in principle can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with $k>2$, $k eq4$. This work extends previous results which only applied to the case $k = 3$ (Fibonacci) and clarifies why in that case gate constructions are simpler than for a generic Read-Rezayi state.



rate research

Read More

In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2+1 dimensional space-time. In this paper we show that any such quantum computation that can be done by braiding $n$ identical quasiparticles can also be done by moving a single quasiparticle around n-1 other identical quasiparticles whose positions remain fixed.
$mathbb{Z}_d$ Parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case $d=2$. In contrast to Majorana fermions, braiding of parafermions with $d>2$ allows to perform an entangling gate. This has spurred interest in parafermions and a variety of condensed matter systems have been proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions more systematically. We make no assumptions on the underlying physical model but derive all our results from the algebraical relations that define parafermions. We find a familiy of $2d$ representations of the braid group that are compatible with these relations. The braiding operators derived this way reproduce those derived previously from physical grounds as special cases. We show that if a $d$-level qudit is encoded in the fusion space of four parafermions, braiding of these four parafermions allows to generate the entire single-qudit Clifford group (up to phases), for any $d$. If $d$ is odd, then we show that in fact the entire many-qudit Clifford group can be generated.
125 - S. Panahiyan , S. Fritzsche 2020
We simulate various topological phenomena in condense matter, such as formation of different topological phases, boundary and edge states, through two types of quantum walk with step-dependent coins. Particularly, we show that one-dimensional quantum walk with step-dependent coin simulates all types of topological phases in BDI family, as well as all types of boundary and edge states. In addition, we show that step-dependent coins provide the number of steps as a controlling factor over the simulations. In fact, with tuning number of steps, we can determine the occurrences of boundary, edge states and topological phases, their types and where they should be located. These two features make quantum walks versatile and highly controllable simulators of topological phases, boundary, edge states, and topological phase transitions. We also report on emergences of cell-like structures for simulated topological phenomena. Each cell contains all types of boundary (edge) states and topological phases of BDI family.
Continuous-variable cluster states allow for fault-tolerant measurement-based quantum computing when used in tandem with the Gottesman-Kitaev-Preskill (GKP) encoding of a qubit into a bosonic mode. For quad-rail-lattice macronode cluster states, whose construction is defined by a fixed, low-depth beam splitter network, we show that a Clifford gate and GKP error correction can be simultaneously implemented in a single teleportation step. We give explicit recipes to realize the Clifford generating set, and we calculate the logical gate-error rates given finite squeezing in the cluster-state and GKP resources. We find that logical error rates of $10^{-2}$-$10^{-3}$, compatible with the thresholds of topological codes, can be achieved with squeezing of 11.9-13.7 dB. The protocol presented eliminates noise present in prior schemes and puts the required squeezing for fault tolerance in the range of current state-of-the-art optical experiments. Finally, we show how to produce distillable GKP magic states directly within the cluster state.
133 - Zeng-Zhao Li , Juan Atalaya , 2021
We propose a realization of topological quantum interference in a pumped non-Hermitian Su-Schrieffer-Heeger lattice that can be implemented by creation and coherent control of excitonic states of trapped neutral atoms. Our approach is based on realizing sudden delocalization of two localized topological edge states by switching the value of the laser phase controlling the lattice potential to quench the system from the topological to the gapless or trivial non-topological quantum phases of the system. We find interference patterns in the occupation probabilities of excitations on lattice sites, with a transition from a two-excitation interference seen in the absence of pumping to many-excitation interferences in the presence of pumping. Investigation of the excitation dynamics in both the topological and trivial non-topological phases shows that such interference patterns which originate in topology are drastically distinct from interference between non-topological states of the lattice. Our results also reveal that unlike well-known situations where topological states are protected against local perturbations, in these non-Hermitian SSH systems a local dissipation at each lattice site can suppress both the total population of the lattice in the topological phase and the interference of the topological states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا