No Arabic abstract
$mathbb{Z}_d$ Parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case $d=2$. In contrast to Majorana fermions, braiding of parafermions with $d>2$ allows to perform an entangling gate. This has spurred interest in parafermions and a variety of condensed matter systems have been proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions more systematically. We make no assumptions on the underlying physical model but derive all our results from the algebraical relations that define parafermions. We find a familiy of $2d$ representations of the braid group that are compatible with these relations. The braiding operators derived this way reproduce those derived previously from physical grounds as special cases. We show that if a $d$-level qudit is encoded in the fusion space of four parafermions, braiding of these four parafermions allows to generate the entire single-qudit Clifford group (up to phases), for any $d$. If $d$ is odd, then we show that in fact the entire many-qudit Clifford group can be generated.
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in principle, approach a few nanometers. The selectivity is enabled by the nonlinear atomic response, under the conditions of Electromagnetically Induced Transparency, to a control beam with intensity vanishing at a certain location. Practical performance of this technique and its potential applications to quantum information science with cold atoms, ions, and solid-state qubits are discussed.
Quantum pumping, in its different forms, is attracting attention from different fields, from fundamental quantum mechanics, to nanotechnology, to superconductivity. We investigate the crossover of quantum pumping from the adiabatic to the anti-adiabatic regime in the presence of dissipation, and find general and explicit analytical expressions for the pumped current in a minimal model describing a system with the topology of a ring forced by a periodic modulation of frequency omega. The solution allows following in a transparent way the evolution of pumped DC current from much smaller to much larger omega values than the other relevant energy scale, the energy splitting introduced by the modulation. We find and characterize a temperature-dependent optimal value of the frequency for which the pumped current is maximal.
Read-Rezayi fractional quantum Hall states are among the prime candidates for realizing non-Abelian anyons which in principle can be used for topological quantum computation. We present a prescription for efficiently finding braids which can be used to carry out a universal set of quantum gates on encoded qubits based on anyons of the Read-Rezayi states with $k>2$, $k eq4$. This work extends previous results which only applied to the case $k = 3$ (Fibonacci) and clarifies why in that case gate constructions are simpler than for a generic Read-Rezayi state.
Quasiparticle poisoning, expected to arise during the measurement of Majorana zero mode state, poses a fundamental problem towards the realization of Majorana-based quantum computation. Parafermions, a natural generalization of Majorana fermions, can encode topological qudits immune to quasiparticle poisoning. While parafermions are expected to emerge in superconducting fractional quantum Hall systems, they are not yet attainable with current technology. To bypass this problem, we employ a photonic quantum simulator to experimentally demonstrate the key components of parafermion-based universal quantum computation. Our contributions in this article are twofold. First, by manipulating the photonic states, we realize Clifford operator Berry phases that correspond to braiding statistics of parafermions. Second, we investigate the quantum contextuality in a topological system for the first time by demonstrating the contextuality of parafermion encoded qudit states. Importantly, we find that the topologically-encoded contextuality opens the way to magic state distillation, while both the contextuality and the braiding-induced Clifford gates are resilient against local noise. By introducing contextuality, our photonic quantum simulation provides the first step towards a physically robust methodology for realizing topological quantum computation.
In a topological quantum computer, universal quantum computation is performed by dragging quasiparticle excitations of certain two dimensional systems around each other to form braids of their world lines in 2+1 dimensional space-time. In this paper we show that any such quantum computation that can be done by braiding $n$ identical quasiparticles can also be done by moving a single quasiparticle around n-1 other identical quasiparticles whose positions remain fixed.