Do you want to publish a course? Click here

Quantum stirring as a sensitive probe of 1D superfluidity

167   0   0.0 ( 0 )
 Added by Citro Roberta
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose quantum stirring with a laser beam as a probe of superfluid behavior for a strongly interacting one-dimensional Bose gas confined to a ring. Within the Luttinger liquid theory framework, we calculate the fraction of stirred particles per period as a function of the stirring velocity, the interaction strength and the coupling between the stirring beam and the bosons. The fraction of stirred particles allows to probe superfluidity of the system. We find that it crosses over at a critical velocity, lower than the sound one, from a characteristic power law at high velocities to a constant at low velocities. Some experimental issues on quantum stirring in ring-trapped condensates are discussed.

rate research

Read More

We present a high-sensitivity measurement technique for mechanical nanoresonators. Due to intrinsic nonlinear effects, different flexural modes of a nanobeam can be coupled while driving each of them on resonance. This mode-coupling scheme is dispersive and one mode resonance shifts with respect to the motional amplitude of the other. The same idea can be implemented on a {it single} mode, exciting it with two slightly detuned signals. This two-tone scheme is used here to measure the resonance lineshape of one mode through a frequency shift in the response of the device. The method acts as an amplitude-to-frequency transduction which ultimately suffers only from phase noise of the local oscillator used and of the nanomechanical device itself. We also present a theory which reproduces the data without free parameters.
We calculate the conductance of a ballistic point contact to a superconducting wire, produced by the s-wave proximity effect in a semiconductor with spin-orbit coupling in a parallel magnetic field. The conductance G as a function of contact width or Fermi energy shows plateaus at half-integer multiples of 4e^2/h if the superconductor is in a topologically nontrivial phase. In contrast, the plateaus are at the usual integer multiples in the topologically trivial phase. Disorder destroys all plateaus except the first, which remains precisely quantized, consistent with previous results for a tunnel contact. The advantage of a ballistic contact over a tunnel contact as a probe of the topological phase is the strongly reduced sensitivity to finite voltage or temperature.
In the past decades, it was recognized that quantum chaos, which is essential for the emergence of statistical mechanics and thermodynamics, manifests itself in the effective description of the eigenstates of chaotic Hamiltonians through random matrix ensembles and the eigenstate thermalization hypothesis. Standard measures of chaos in quantum many-body systems are level statistics and the spectral form factor. In this work, we show that the norm of the adiabatic gauge potential, the generator of adiabatic deformations between eigenstates, serves as a much more sensitive measure of quantum chaos. We are able to detect transitions from non-ergodic to ergodic behavior at perturbation strengths orders of magnitude smaller than those required for standard measures. Using this alternative probe in two generic classes of spin chains, we show that the chaotic threshold decreases exponentially with system size and that one can immediately detect integrability-breaking (chaotic) perturbations by analyzing infinitesimal perturbations even at the integrable point. In some cases, small integrability-breaking is shown to lead to anomalously slow relaxation of the system, exponentially long in system size.
Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a scanning tunneling microscope (STM) and show that it provides information about the conduction channels. In agreement with theoretical predictions, we find that the DCB disappears in a single-channel junction with increasing transmission following the Fano factor, analogous to what happens with shot noise. Furthermore we demonstrate local differences in the DCB expected from changes in the conduction channel configuration. Our experimental results are complemented by ab initio transport calculations that elucidate the microscopic nature of the conduction channels in our atomic-scale contacts. We conclude that probing the DCB by STM provides a technique complementary to shot noise measurements for locally resolving quantum transport characteristics.
Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا