Do you want to publish a course? Click here

An off-board quantum point contact as a sensitive detector of cantilever motion

173   0   0.0 ( 0 )
 Added by Martino Poggio
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent advances in the fabrication of microelectromechanical systems (MEMS) and their evolution into nanoelectromechanical systems (NEMS) have allowed researchers to measure extremely small forces, masses, and displacements. In particular, researchers have developed position transducers with resolution approaching the uncertainty limit set by quantum mechanics. The achievement of such resolution has implications not only for the detection of quantum behavior in mechanical systems, but also for a variety of other precision experiments including the bounding of deviations from Newtonian gravity at short distances and the measurement of single spins. Here we demonstrate the use of a quantum point contact (QPC) as a sensitive displacement detector capable of sensing the low-temperature thermal motion of a nearby micromechanical cantilever. Advantages of this approach include versatility due to its off-board design, compatibility with nanoscale oscillators, and, with further development, the potential to achieve quantum limited displacement detection.



rate research

Read More

We calculate the conductance of a ballistic point contact to a superconducting wire, produced by the s-wave proximity effect in a semiconductor with spin-orbit coupling in a parallel magnetic field. The conductance G as a function of contact width or Fermi energy shows plateaus at half-integer multiples of 4e^2/h if the superconductor is in a topologically nontrivial phase. In contrast, the plateaus are at the usual integer multiples in the topologically trivial phase. Disorder destroys all plateaus except the first, which remains precisely quantized, consistent with previous results for a tunnel contact. The advantage of a ballistic contact over a tunnel contact as a probe of the topological phase is the strongly reduced sensitivity to finite voltage or temperature.
We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2) with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back-action is rapidly switched.
A counter-intuitive disappearance of the giant terahertz photoconductance of a quantum point contact (QPC) under increase in the photon energy, which was discovered experimentally (Otteneder et al., Phys. Rev. Applied 10 (2018) 014015) and studied by the numerical calculations of the photon-stimulated transport (O.A. Tkachenko et al., JETP Lett. 108 (2018) 396), is explained here by using qualitative considerations about the momentum conservation upon absorption of terahertz photons. The spectra of photon-stimulated transmission through a smooth one-dimensional barrier are calculated on the basis of the perturbation theory. These calculations also predict the spectral maxima for optical transitions from the Fermi level to the top of the potential barrier. Within the proposed physical picture, the widths of the spectral maxima are estimated, and the evolution of the shape of the spectra with a change in the position of the Fermi level is qualitatively explained.
We show experimentally how quantum interference can be produced using an integrated quantum system comprising an arch-shaped short quantum wire (or quantum point contact, QPC) of 1D electrons and a reflector forming an electronic cavity. On tuning the coupling between the QPC and the electronic cavity, fine oscillations are observed when the arch QPC is operated in the quasi-1D regime. These oscillations correspond to interference between the 1D states and a state which is similar to the Fabry-Perot state and suppressed by a small transverse magnetic field of 60mT. Tuning the reflector, we find a peak in resistance which follows the behavior expected for a Fano resonance. We suggest that this is an interesting example of a Fano resonance in an open system which corresponds to interference at or near the Ohmic contacts due to a directly propagating, reflected discrete path and the continuum states of the cavity corresponding to multiple scattering. Remarkably, the Fano factor shows an oscillatory behavior taking peaks for each fine oscillation, thus, confirming coupling between the discrete and continuum states. The results indicate that such a simple quantum device can be used as building blocks to create more complex integrated quantum circuits for possible applications ranging from quantum-information processing to realizing the fundamentals of complex quantum systems.
We demonstrate a scanning gate grid measurement technique consisting in measuring the conductance of a quantum point contact (QPC) as a function of gate voltage at each tip position. Unlike conventional scanning gate experiments, it allows investigating QPC conductance plateaus affected by the tip at these positions. We compensate the capacitive coupling of the tip to the QPC and discover that interference fringes coexist with distorted QPC plateaus. We spatially resolve the mode structure for each plateau.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا