Do you want to publish a course? Click here

Quantum Group of Isometries in Classical and Noncommutative Geometry

مجموعة كوانتوم من الأشكال في الهندسة الكلاسيكية والهندسة الغير مترادفة

266   0   0.0 ( 0 )
 Added by Debashish Goswami
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. In fact, we identify the quantum isometry group with the universal object in a bigger category, namely the category of `quantum families of smooth isometries, defined along the line of Woronowicz and Soltan. We also construct a spectral triple on the Hilbert space of forms on a noncommutative manifold which is equivariant with respect to a natural unitary representation of the quantum isometry group. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in cite{hajac} as the universal quantum group of holomorphic isometries of the noncommutative torus.



rate research

Read More

We prove a Koszul formula for the Levi-Civita connection for any pseudo-Riemannian bilinear metric on a class of centered bimodule of noncommutative one-forms. As an application to the Koszul formula, we show that our Levi-Civita connection is a bimodule connection. We construct a spectral triple on a fuzzy sphere and compute the scalar curvature for the Levi-Civita connection associated to a canonical metric.
This is the text of a series of five lectures given by the author at the Second Annual Spring Institute on Noncommutative Geometry and Operator Algebras held at Vanderbilt University in May 2004. It is meant as an overview of recent results illustrating the interplay between noncommutative geometry and arithmetic geometry/number theory.
We formulate a quantum group analogue of the group of orinetation-preserving Riemannian isometries of a compact Riemannian spin manifold, more generally, of a (possibly $R$-twisted in the sense of a paper of one of the authors, and of compact type) spectral triple. The main advantage of this formulation, which is directly in terms of the Dirac operator, is that it does not need the existence of any `good Laplacian as in our previous works on quantum isometry groups. Several interesting examples, including those coming from Rieffel-type deformation as well as the equivariant spectral triples on $SU_mu(2)$ and $S^2_{mu 0}$ are dicussed.
80 - Fedele Lizzi 2018
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometry. This is applied to the standard model of particle interaction, discussing the fermionic and bosonic spectral action. The issues relating to the calculation of the mass of the Higgs are discussed, as well as the role of neutrinos and Wick rotations. Finally, we present the possibility of solving the problem of the Higgs mass by considering a pregeometric grand symmetry.
This paper presents the geometric setting of quantum variational principles and extends it to comprise the interaction between classical and quantum degrees of freedom. Euler-Poincare reduction theory is applied to the Schrodinger, Heisenberg and Wigner-Moyal dynamics of pure states. This construction leads to new variational principles for the description of mixed quantum states. The corresponding momentum map properties are presented as they arise from the underlying unitary symmetries. Finally, certain semidirect-product group structures are shown to produce new variational principles for Diracs interaction picture and the equations of hybrid classical-quantum dynamics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا