Do you want to publish a course? Click here

On the Koszul formula in noncommutative geometry

84   0   0.0 ( 0 )
 Added by Jyotishman Bhowmick
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove a Koszul formula for the Levi-Civita connection for any pseudo-Riemannian bilinear metric on a class of centered bimodule of noncommutative one-forms. As an application to the Koszul formula, we show that our Levi-Civita connection is a bimodule connection. We construct a spectral triple on a fuzzy sphere and compute the scalar curvature for the Levi-Civita connection associated to a canonical metric.



rate research

Read More

This is the text of a series of five lectures given by the author at the Second Annual Spring Institute on Noncommutative Geometry and Operator Algebras held at Vanderbilt University in May 2004. It is meant as an overview of recent results illustrating the interplay between noncommutative geometry and arithmetic geometry/number theory.
282 - Debashish Goswami 2007
We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative ma nifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold satisfying certain regularity assumptions. In fact, we identify the quantum isometry group with the universal object in a bigger category, namely the category of `quantum families of smooth isometries, defined along the line of Woronowicz and Soltan. We also construct a spectral triple on the Hilbert space of forms on a noncommutative manifold which is equivariant with respect to a natural unitary representation of the quantum isometry group. We give explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in cite{hajac} as the universal quantum group of holomorphic isometries of the noncommutative torus.
80 - Fedele Lizzi 2018
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometry. This is applied to the standard model of particle interaction, discussing the fermionic and bosonic spectral action. The issues relating to the calculation of the mass of the Higgs are discussed, as well as the role of neutrinos and Wick rotations. Finally, we present the possibility of solving the problem of the Higgs mass by considering a pregeometric grand symmetry.
94 - Yuto Moriwaki 2020
We introduce the notion of a genus and its mass for vertex algebras. For lattice vertex algebras, their genera are the same as those of lattices, which plays an important role in the classification of lattices. We derive a formula relating the mass for vertex algebras to that for lattices, and then give a new characterization of some holomorphic vertex operator algebras.
We study covariant derivatives on a class of centered bimodules $mathcal{E}$ over an algebra A. We begin by identifying a $mathbb{Z} ( A ) $-submodule $ mathcal{X} ( A ) $ which can be viewed as the analogue of vector fields in this context; $ mathcal{X} ( A ) $ is proven to be a Lie algebra. Connections on $mathcal{E}$ are in one to one correspondence with covariant derivatives on $ mathcal{X} ( A ). $ We recover the classical formulas of torsion and metric compatibility of a connection in the covariant derivative form. As a result, a Koszul formula for the Levi-Civita connection is also derived.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا