Do you want to publish a course? Click here

The Clustering Behavior of Pre-Main Sequence Stars in NGC 346 in the Small Magellanic Cloud

106   0   0.0 ( 0 )
 Added by Stefan Schmeja
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present evidence that the star-forming region NGC 346/N66 in the Small Magellanic Cloud is the product of hierarchical star formation, probably from more than one star formation event. We investigate the spatial distribution and clustering behavior of the pre-main sequence (PMS) stellar population in the region, using data obtained with Hubble Space Telescopes Advanced Camera for Surveys. By applying the nearest neighbor and minimum spanning tree methods on the rich sample of PMS stars previously discovered in the region we identify ten individual PMS clusters in the area and quantify their structures. The clusters show a wide range of morphologies from hierarchical multi-peak configurations to centrally condensed clusters. However, only about 40 per cent of the PMS stars belong to the identified clusters. The central association NGC 346 is identified as the largest stellar concentration, which cannot be resolved into subclusters. Several PMS clusters are aligned along filaments of higher stellar density pointing away from the central part of the region. The PMS density peaks in the association coincide with the peaks of [OIII] and 8 micron emission. While more massive stars seem to be concentrated in the central association when considering the entire area, we find no evidence for mass segregation within the system itself.



rate research

Read More

[Abridged] The stellar Initial Mass Function (IMF) suggests that sub-solar stars form in very large numbers. Most attractive places for catching low-mass star formation in the act are young stellar clusters and associations, still (half-)embedded in star-forming regions. The low-mass stars in such regions are still in their pre--main-sequence (PMS) evolutionary phase. The peculiar nature of these objects and the contamination of their samples by the evolved populations of the Galactic disk impose demanding observational techniques for the detection of complete numbers of PMS stars in the Milky Way. The Magellanic Clouds, the companion galaxies to our own, demonstrate an exceptional star formation activity. The low extinction and stellar field contamination in star-forming regions of these galaxies imply a more efficient detection of low-mass PMS stars than in the Milky Way, but their distance from us make the application of special detection techniques unfeasible. Nonetheless, imaging with the Hubble Space Telescope yield the discovery of solar and sub-solar PMS stars in the Magellanic Clouds from photometry alone. Unprecedented numbers of such objects are identified as the low-mass stellar content of their star-forming regions, changing completely our picture of young stellar systems outside the Milky Way, and extending the extragalactic stellar IMF below the persisting threshold of a few solar masses. This review presents the recent developments in the investigation of PMS stars in the Magellanic Clouds, with special focus on the limitations by single-epoch photometry that can only be circumvented by the detailed study of the observable behavior of these stars in the color-magnitude diagram. The achieved characterization of the low-mass PMS stars in the Magellanic Clouds allowed thus a more comprehensive understanding of the star formation process in our neighboring galaxies.
Located at the tip of the wing of the Small Magellanic Cloud (SMC), the star-forming region NGC602/N90 is characterized by the HII nebular ring N90 and the young cluster of pre--main-sequence (PMS) and early-type main sequence stars NGC602. We present a thorough cluster analysis of the stellar sample identified with HST/ACS camera in the region. We show that apart from the central cluster, low-mass PMS stars are congregated in thirteen additional small compact sub-clusters at the periphery of NGC602. We find that the spatial distribution of the PMS stars is bimodal, with an unusually large fraction (~60%) of the total population being clustered, while the remaining is diffusely distributed in the inter-cluster area. From the corresponding color-magnitude diagrams we disentangle an age-difference of ~2.5Myr between NGC602 and the compact sub-clusters which appear younger. The diffuse PMS population appears to host stars as old as those in NGC602. Almost all detected PMS sub-clusters appear to be centrally concentrated. When the complete PMS stellar sample, including both clustered and diffused stars, is considered in our cluster analysis, it appears as a single centrally concentrated stellar agglomeration, covering the whole central area of the region. Considering also the hot massive stars of the system, we find evidence that this agglomeration is hierarchically structured. Based on our findings we propose a scenario, according to which the region NGC602/N90 experiences an active clustered star formation for the last ~5Myr. The central cluster NGC602 was formed first and rapidly started dissolving into its immediate ambient environment, possibly ejecting also massive stars found away from its center. Star formation continued in sub-clusters of a larger stellar agglomeration, introducing an age-spread of the order of 2.5Myr among the PMS populations.
We present observations of the most bright main sequence stars in the Small Magellanic Cloud stellar cluster NGC330 obtained with the integral field spectrograph MUSE@VLT. The use of this valuable instrument allows us to study both photometric and spectroscopic properties of stellar populations of this young star cluster. The photometric data provide us a precise color magnitude diagram, which seems to support the presence of two stellar populations of ages of $sim$ 18 Myr and $sim$ 30 Myr assuming a metallicity of Z = 0.002. Thanks to the spectroscopic data, we derive helium abundance of 10 main sequence stars within the effective radius Reff= 20 of NGC330, thus leading to an estimation of $epsilon(He)$ = 10.93 $pm$ 0.05 (1$sigma$ ). The helium elemental abundances of stars likely belonging to the two possible stellar populations, do not show differences or dichotomy within the uncertainties. Thus, our results suggest that the two stellar populations of NGC330, if they exist, share similar original He abundances. If we consider stellar rotation velocity in our analysis, a coeval (30 Myr) stellar population, experiencing different values of rotation, cannot be excluded. In this case, the mean helium abundance < $epsilon(He)$ >rot obtained in our analysis is 11.00 $pm$ 0.05 dex. We also verified that possible NLTE effects cannot be identified with our analysis because of the spectral resolution and they are within our derived abundance He uncertainties. Moreover, the analysis of the He abundance as a function of the distance from the cluster center of the observed stars do not show any correlation.
264 - Viktor Zivkov 2018
Detailed studies of intermediate/low mass pre-main sequence (PMS) stars outside the Galaxy have so far been conducted only for small targeted regions harbouring known star formation complexes. The VISTA Survey of the Magellanic Clouds (VMC) provides an opportunity to study PMS populations down to solar masses on a galaxy-wide scale. Our goal is to use near-infrared data from the VMC survey to identify and characterise PMS populations down to ~1 M_sun across the Magellanic Clouds. We present our colour-magnitude diagram method, and apply it to a ~1.5 deg^2 pilot field located in the Large Magellanic Cloud. The pilot field is divided into equally-sized grid elements. We compare the stellar population in every element with the population in nearby control fields by creating K_s/(Y-K_s) Hess diagrams; the observed density excesses over the local field population are used to classify the stellar populations. Our analysis recovers all known star formation complexes in this pilot field (N44, N51, N148 and N138) and for the first time reveals their true spatial extent. In total, around 2260 PMS candidates with ages $lesssim$ 10 Myr are found in the pilot field. PMS structures, identified as areas with a significant density excess of PMS candidates, display a power-law distribution of the number of members with a slope of -0.86+-0.12. We find a clustering of the young stellar populations along ridges and filaments where dust emission in the far-infrared (FIR) (70 micron - 500 micron) is bright. Regions with young populations lacking massive stars show a lesser degree of clustering and are usually located in the outskirts of the star formation complexes. At short FIR wavelengths (70 micron, 100 micron) we report a strong dust emission increase in regions hosting young massive stars, which is less pronounced in regions populated only by less massive ($lesssim$ 4 M_sun) PMS stars.
Stellar feedback, expanding HII regions, wind-blown bubbles, and supernovae are thought to be important triggering mechanisms of star formation. Stellar associations, being hosts of significant numbers of early-type stars, are the loci where these mechanisms act. In this part of our photometric study of the star-forming region NGC346/N66 in the Small Magellanic Cloud, we present evidence based on previous and recent detailed studies, that it hosts at least two different events of triggered star formation and we reveal the complexity of its recent star formation history. In our earlier studies of this region (Papers I, III) we find that besides the central part of N66, where the bright OB stellar content of the association NGC346 is concentrated, an arc-like nebular feature, north of the association, hosts recent star formation. This feature is characterized by a high concentration of emission-line stars and Young Stellar Objects, as well as embedded sources seen as IR-emission peaks that coincide with young compact clusters of low-mass pre-main sequence stars. All these objects indicate that the northern arc of N66 encompasses the most current star formation event in the region. We present evidence that this star formation is the product of a different mechanism than that in the general area of the association, and that it is triggered by a wind-driven expanding HII region (or bubble) blown by a massive supernova progenitor, and possibly other bright stars, a few Myr ago. We propose a scenario according to which this mechanism triggered star formation away from the bar of N66, while in the bar of N66 star formation is introduced by the photo-ionizing OB stars of the association itself.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا