Do you want to publish a course? Click here

NGC 346 in The Small Magellanic Cloud. IV. Triggered Star Formation in the HII Region N66

111   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar feedback, expanding HII regions, wind-blown bubbles, and supernovae are thought to be important triggering mechanisms of star formation. Stellar associations, being hosts of significant numbers of early-type stars, are the loci where these mechanisms act. In this part of our photometric study of the star-forming region NGC346/N66 in the Small Magellanic Cloud, we present evidence based on previous and recent detailed studies, that it hosts at least two different events of triggered star formation and we reveal the complexity of its recent star formation history. In our earlier studies of this region (Papers I, III) we find that besides the central part of N66, where the bright OB stellar content of the association NGC346 is concentrated, an arc-like nebular feature, north of the association, hosts recent star formation. This feature is characterized by a high concentration of emission-line stars and Young Stellar Objects, as well as embedded sources seen as IR-emission peaks that coincide with young compact clusters of low-mass pre-main sequence stars. All these objects indicate that the northern arc of N66 encompasses the most current star formation event in the region. We present evidence that this star formation is the product of a different mechanism than that in the general area of the association, and that it is triggered by a wind-driven expanding HII region (or bubble) blown by a massive supernova progenitor, and possibly other bright stars, a few Myr ago. We propose a scenario according to which this mechanism triggered star formation away from the bar of N66, while in the bar of N66 star formation is introduced by the photo-ionizing OB stars of the association itself.



rate research

Read More

149 - M. Cignoni 2010
We discuss the star formation history of the SMC region NGC 346 based on Hubble Space Telescope images. The region contains both field stars and cluster members. Using a classical synthetic CMD procedure applied to the field around NGC 346 we find that there the star formation pace has been rising from a quite low rate 13 Gyr ago to approx 1.4 times 10^{-8} Mo yr^{-1}pc^{-2} in the last 100 Myr. This value is significantly higher than in other star forming regions of the SMC. For NGC 346 itself, we compare theoretical and observed Color-Magnitude Diagrams (CMDs) of several stellar sub-clusters identified in the region, and we derive their basic evolution parameters. We find that NGC 346 experienced different star formation regimes, including a dominant and focused high density mode, with the sub-clusters hosting both pre-main sequence (PMS) and upper main sequence (UMS) stars, and a diffuse low density mode, as indicated by the presence of low-mass PMS sub-clusters. Quantitatively, the star formation in the oldest sub-clusters started about 6 Myr ago with remarkable synchronization, it continued at high rate (up to 2 times 10^{-5} Mo yr^{-1} pc^{-2}) for about 3 Myr and is now progressing at a lower rate. Interestingly, sub-clusters mainly composed by low mass PMS stars seem to experience now the first episode of star formation, following multi-seeded spatial patterns instead of resulting from a coherent trigger. Two speculative scenarios are put forth to explain the deficiency of UMS stars: the first invokes under-threshold conditions of the parent gas; the second speculates that the initial mass function (IMF) is a function of time, with the youngest sub-clusters not having had sufficient time to form more massive stars.
231 - Joshua D. Simon 2007
We use Spitzer Space Telescope observations from the Spitzer Survey of the Small Magellanic Cloud (S3MC) to study the young stellar content of N66, the largest and brightest HII region in the SMC. In addition to large numbers of normal stars, we detect a significant population of bright, red infrared sources that we identify as likely to be young stellar objects (YSOs). We use spectral energy distribution (SED) fits to classify objects as ordinary (main sequence or red giant) stars, asymptotic giant branch stars, background galaxies, and YSOs. This represents the first large-scale attempt at blind source classification based on Spitzer SEDs in another galaxy. We firmly identify at least 61 YSOs, with another 50 probable YSOs; only one embedded protostar in the SMC was reported in the literature prior to the S3MC. We present color selection criteria that can be used to identify a relatively clean sample of YSOs with IRAC photometry. Our fitted SEDs indicate that the infrared-bright YSOs in N66 have stellar masses ranging from 2 Msun to 17 Msun, and that approximately half of the objects are Stage II protostars, with the remaining YSOs roughly evenly divided between Stage I and Stage III sources. We find evidence for primordial mass segregation in the HII region, with the most massive YSOs being preferentially closer to the center than lower-mass objects. Despite the low metallicity and dust content of the SMC, the observable properties of the YSOs appear consistent with those in the Milky Way. Although the YSOs are heavily concentrated within the optically bright central region of N66, there is ongoing star formation throughout the complex and we place a lower limit on the star formation rate of 3.2 x 10^-3 Msun/yr over the last ~1 Myr.
We present a photometric study of the star-forming region NGC 346 and its surrounding field in the Small Magellanic Cloud, using data taken with the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). The data set contains both short and long exposures for increased dynamic range, and photometry was performed using the ACS module of the stellar photometry package DOLPHOT. We detected almost 100,000 stars over a magnitude range of V ~ 11 to V ~ 28 mag, including all stellar types from the most massive young stars to faint lower main sequence and pre-main sequence stars. We find that this region, which is characterized by a plethora of stellar systems and interesting objects, is an outstanding example of mixed stellar populations. We take into account different features of the color-magnitude diagram of all the detected stars to distinguish the two dominant stellar systems: The stellar association NGC 346 and the old spherical star cluster BS 90. These observations provide a complete stellar sample of a field about 5 arcmin x 5 arcmin around the most active star-forming region in this galaxy. Considering the importance of these data for various investigations in the area, we provide the full stellar catalog from our photometry. This paper is the first part of an ongoing study to investigate in detail the two dominant stellar systems in the area and their surrounding field.
We report on a study of the high-mass star formation in the the HII region W28A2 by investigating the molecular clouds extended over ~5-10 pc from the exciting stars using the 12CO and 13CO (J=1-0) and 12CO (J=2-1) data taken by the NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with the CO intensity peaks at V_LSR ~ -4 km s$^{-1}$, 9 km s$^{-1}$ and 16 km s$^{-1}$. The highest CO intensity is detected at V_LSR ~ 9 km s$^{-1}$, where the high-mass stars with the spectral types of O6.5-B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 um infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J=2-1 to 1-0 intensity ratio shows a high value (> 0.8) toward the exciting sources for the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (V_LSR ~ 9 km s$^{-1}$) lowers down to ~0.6, suggesting self absorption by the dense gas in the near side of the +9 km s$^{-1}$ cloud. We found partly complementary gas distributions between the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds, and the -4 km s$^{-1}$ and +16 km s$^{-1}$ clouds. The exciting sources are located toward the overlapping region in the -4 km s$^{-1}$ and +9 km s$^{-1}$ clouds. Similar gas properties are found in the Galactic massive star clusters, RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss a possibility of the formation of high-mass stars in the W28A2 region triggered by the cloud-cloud collision.
We report a possibility that the high-mass star located in the HII region RCW 34 was formed by a triggering induced by a collision of molecular clouds. Molecular gas distributions of the $^{12}$CO and $^{13}$CO $J=$2-1, and $^{12}$CO $J=$3-2 lines toward RCW 34 were measured by using the NANTEN2 and ASTE telescopes. We found two clouds with the velocity ranges of 0-10 km s$^{-1}$ and 10-14 km s$^{-1}$. Whereas the former cloud as massive as ~2.7 x 10$^{4}$ Msun has a morphology similar to the ring-like structure observed in the infrared wavelengths, the latter cloud with the mass of ~10$^{3}$ Msun, which has not been recognized by previous observations, distributes just likely to cover the bubble enclosed by the other cloud. The high-mass star with the spectral types of O8.5V is located near the boundary of the two clouds. The line intensity ratio of $^{12}$CO $J=$3-2 / $J=$2-1 yields high values (~1.5) in the neighborhood of the high-mass star, suggesting that these clouds are associated with the massive star. We also confirmed that the obtained position-velocity diagram shows a similar distribution with that derived by a numerical simulation of the supersonic collision of two clouds. Using the relative velocity between the two clouds (~5 km s$^{-1}$), the collisional time scale is estimated to be $sim$0.2 Myr with the assumption of the distance of 2.5 kpc. These results suggest that the high-mass star in RCW 34 was formed rapidly within a time scale of ~0.2 Myr via a triggering of cloud-cloud collision.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا