Do you want to publish a course? Click here

The VMC Survey - XXXII. Pre-main sequence populations in the Large Magellanic Cloud

265   0   0.0 ( 0 )
 Added by Viktor Zivkov
 Publication date 2018
  fields Physics
and research's language is English
 Authors Viktor Zivkov




Ask ChatGPT about the research

Detailed studies of intermediate/low mass pre-main sequence (PMS) stars outside the Galaxy have so far been conducted only for small targeted regions harbouring known star formation complexes. The VISTA Survey of the Magellanic Clouds (VMC) provides an opportunity to study PMS populations down to solar masses on a galaxy-wide scale. Our goal is to use near-infrared data from the VMC survey to identify and characterise PMS populations down to ~1 M_sun across the Magellanic Clouds. We present our colour-magnitude diagram method, and apply it to a ~1.5 deg^2 pilot field located in the Large Magellanic Cloud. The pilot field is divided into equally-sized grid elements. We compare the stellar population in every element with the population in nearby control fields by creating K_s/(Y-K_s) Hess diagrams; the observed density excesses over the local field population are used to classify the stellar populations. Our analysis recovers all known star formation complexes in this pilot field (N44, N51, N148 and N138) and for the first time reveals their true spatial extent. In total, around 2260 PMS candidates with ages $lesssim$ 10 Myr are found in the pilot field. PMS structures, identified as areas with a significant density excess of PMS candidates, display a power-law distribution of the number of members with a slope of -0.86+-0.12. We find a clustering of the young stellar populations along ridges and filaments where dust emission in the far-infrared (FIR) (70 micron - 500 micron) is bright. Regions with young populations lacking massive stars show a lesser degree of clustering and are usually located in the outskirts of the star formation complexes. At short FIR wavelengths (70 micron, 100 micron) we report a strong dust emission increase in regions hosting young massive stars, which is less pronounced in regions populated only by less massive ($lesssim$ 4 M_sun) PMS stars.



rate research

Read More

Studies of young stellar objects (YSOs) in the Galaxy have found that a significant fraction exhibit photometric variability. However, no systematic investigation has been conducted on the variability of extragalactic YSOs. Here we present the first variability study of massive YSOs in a $sim 1.5,mathrm{deg^2}$ region of the Large Magellanic Cloud (LMC). The aim is to investigate whether the different environmental conditions in the metal-poor LMC ($sim$ 0.4-0.5 Z_sun) have an impact on the variability characteristics. Multi-epoch near-infrared (NIR) photometry was obtained from the VISTA Survey of the Magellanic Clouds (VMC) and our own monitoring campaign using the VISTA telescope. By applying a reduced $chi^2$-analysis, stellar variability was identified. We found 3062 candidate variable stars from a population of 362 425 stars detected. Based on several Spitzer studies, we compiled a sample of high-reliability massive YSOs: a total of 173 massive YSOs have NIR counterparts ($K_{mathrm{s}}sim 18.5,$mag) in the VMC catalogue, of which 39 display significant ($>3sigma$) variability. They have been classified as eruptive, fader, dipper, short-term variable and long-period variable YSOs based mostly on the appearance of their $K_{mathrm{s}}$ band light curves. The majority of YSOs are aperiodic, only five YSOs exhibit periodic lightcurves. The observed amplitudes are comparable or smaller than those for Galactic YSOs (only two Magellanic YSOs exhibit $Delta K_{mathrm{s}}>1,$mag), not what would have been expected from the typically larger mass accretion rates observed in the Magellanic Clouds.
The VISTA survey of the Magellanic Clouds System (VMC) is collecting deep $K_mathrm{s}$--band time--series photometry of the pulsating variable stars hosted in the system formed by the two Magellanic Clouds and the Bridge connecting them. In this paper we have analysed a sample of 130 Large Magellanic Cloud (LMC) Type II Cepheids (T2CEPs) found in tiles with complete or near complete VMC observations for which identification and optical magnitudes were obtained from the OGLE III survey. We present $J$ and $K_mathrm{s}$ light curves for all 130 pulsators, including 41 BL Her, 62 W Vir (12 pW Vir) and 27 RV Tau variables. We complement our near-infrared photometry with the $V$ magnitudes from the OGLE III survey, allowing us to build a variety of Period-Luminosity ($PL$), Period-Luminosity-Colour ($PLC$) and Period-Wesenheit ($PW$) relationships, including any combination of the $V, J, K_mathrm{s}$ filters and valid for BL Her and W Vir classes. These relationships were calibrated in terms of the LMC distance modulus, while an independent absolute calibration of the $PL(K_mathrm{s})$ and the $PW(K_mathrm{s},V)$ was derived on the basis of distances obtained from $Hubble Space Telescope$ parallaxes and Baade-Wesselink technique. When applied to the LMC and to the Galactic Globular Clusters hosting T2CEPs, these relations seem to show that: 1) the two population II standard candles RR Lyrae and T2CEPs give results in excellent agreement with each other; 2) there is a discrepancy of $sim$0.1 mag between population II standard candles and Classical Cepheids when the distances are gauged in a similar way for all the quoted pulsators. However, given the uncertainties, this discrepancy is within the formal 1$sigma$ uncertainties.
We study the luminosity function of intermediate-age red-clump stars using deep, near-infrared photometric data covering $sim$ 20 deg$^2$ located throughout the central part of the Small Magellanic Cloud (SMC), comprising the main body and the galaxys eastern wing, based on observations obtained with the VISTA Survey of the Magellanic Clouds (VMC). We identified regions which show a foreground population ($sim$11.8 $pm$ 2.0 kpc in front of the main body) in the form of a distance bimodality in the red-clump distribution. The most likely explanation for the origin of this feature is tidal stripping from the SMC rather than the extended stellar haloes of the Magellanic Clouds and/or tidally stripped stars from the Large Magellanic Cloud. The homogeneous and continuous VMC data trace this feature in the direction of the Magellanic Bridge and, particularly, identify (for the first time) the inner region ($sim$ 2 -- 2.5 kpc from the centre) from where the signatures of interactions start becoming evident. This result provides observational evidence of the formation of the Magellanic Bridge from tidally stripped material from the SMC.
111 - Alessandro Mazzi 2021
We derive the spatially-resolved star formation history (SFH) for a $96$ deg$^2$ area across the main body of the Large Magellanic Cloud (LMC), using the near-infrared photometry from the VISTA survey of the Magellanic Clouds (VMC). The data and analyses are characterised by a great degree of homogeneity and a low sensitivity to the interstellar extinction. 756 subregions of size $0.125$ deg$^2$ -- corresponding to projected sizes of about $296times322,mathrm{pc}^{2}$ in the LMC -- are analysed. The resulting SFH maps, with typical resolution of $0.2$--$0.3$ dex in logarithm of age, reveal main features in the LMC disc at different ages: the patchy star formation at recent ages, the concentration of star formation on three spiral arms and on the Bar up to ages of $sim!1.6$ Gyr, and the wider and smoother distribution of older populations. The period of most intense star formation occurred roughly between 4 and 0.5 Gyr ago, at rates of $sim!0.3,mathrm{M}_{odot}mathrm{yr}^{-1}$. We compare young and old star formation rates with the observed numbers of RR Lyrae and Cepheids. We also derive a mean extinction and mean distance for every subregion, and the plane that best describes the spatial distribution of the mean distances. Our results cover an area about 50 per cent larger than the classical SFH maps derived from optical data by Harris & Zaritsky (2009). Main differences with respect to those maps are lower star formation rates at young ages, and a main peak of star formation being identified at ages slightly younger than $1$ Gyr.
We have derived high-spatial-resolution metallicity maps covering $sim$105~deg$^2$ across the Large Magellanic Cloud (LMC) using near-infrared passbands from the VISTA Survey of the Magellanic Clouds. We attempt to understand the metallicity distribution and gradients of the LMC up to a radius of $sim$ 6~kpc. We identify red giant branch (RGB) stars in spatially distinct $Y, (Y-K_{rm s})$ colour-magnitude diagrams. In any of our selected subregions, the RGB slope is used as an indicator of the average metallicity, based on calibration to metallicity using spectroscopic data. The mean LMC metallicity is [Fe/H] = $-$0.42~dex ($sigma$[Fe/H] = 0.04~dex). We find the bar to be mildly metal-rich compared with the outer disc, showing evidence of a shallow gradient in metallicity ($-0.008 pm 0.001$ dex kpc$^{-1}$) from the galaxys centre to a radius of 6~kpc. Our results suggest that the LMCs stellar bar is chemically similar to the bars found in large spiral galaxies. The LMCs radial metallicity gradient is asymmetric. It is metal-poor and flatter towards the southwest, in the direction of the Bridge. This hints at mixing and/or distortion of the spatial metallicity distribution, presumably caused by tidal interactions between the Magellanic Clouds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا