Do you want to publish a course? Click here

Face Detection Using Adaboosted SVM-Based Component Classifier

156   0   0.0 ( 0 )
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector Machine as weak component classifiers to be used in Face Detection Task. To obtain a set of effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM on imbalanced classification problem. The proposed here method is compared, in terms of classification accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior to previous Adaboost approaches.



rate research

Read More

Applications such as face recognition that deal with high-dimensional data need a mapping technique that introduces representation of low-dimensional features with enhanced discriminatory power and a proper classifier, able to classify those complex features. Most of traditional Linear Discriminant Analysis suffer from the disadvantage that their optimality criteria are not directly related to the classification ability of the obtained feature representation. Moreover, their classification accuracy is affected by the small sample size problem which is often encountered in FR tasks. In this short paper, we combine nonlinear kernel based mapping of data called KDDA with Support Vector machine classifier to deal with both of the shortcomings in an efficient and cost effective manner. The proposed here method is compared, in terms of classification accuracy, to other commonly used FR methods on UMIST face database. Results indicate that the performance of the proposed method is overall superior to those of traditional FR approaches, such as the Eigenfaces, Fisherfaces, and D-LDA methods and traditional linear classifiers.
Support Vector Machine (SVM) is a common classifier used for efficient classification with high accuracy. SVM shows high accuracy for classifying melanoma (skin cancer) clinical images within computer-aided diagnosis systems used by skin cancer specialists to detect melanoma early and save lives. We aim to develop a medical low-cost handheld device that runs a real-time embedded SVM- based diagnosis system for use in primary care for early detection of melanoma. In this paper, an optimized SVM classifier is implemented onto a recent FPGA platform using the latest design methodology to be embedded into the proposed device for realizing online efficient melanoma detection on a single system on chip/device. The hardware implementation results demonstrate a high classification accuracy of 97.9% and a significant acceleration factor of 26 from equivalent software implementation on an embedded processor, with 34% of resources utilization and 2 watts for power consumption. Consequently, the implemented system meets crucial embedded systems constraints of high performance and low cost, resources utilization and power consumption, while achieving high classification accuracy.
Coronavirus Disease 2019 (COVID-19) has spread all over the world since it broke out massively in December 2019, which has caused a large loss to the whole world. Both the confirmed cases and death cases have reached a relatively frightening number. Syndrome coronaviruses 2 (SARS-CoV-2), the cause of COVID-19, can be transmitted by small respiratory droplets. To curb its spread at the source, wearing masks is a convenient and effective measure. In most cases, people use face masks in a high-frequent but short-time way. Aimed at solving the problem that we dont know which service stage of the mask belongs to, we propose a detection system based on the mobile phone. We first extract four features from the GLCMs of the face masks micro-photos. Next, a three-result detection system is accomplished by using KNN algorithm. The results of validation experiments show that our system can reach a precision of 82.87% (standard deviation=8.5%) on the testing dataset. In future work, we plan to expand the detection objects to more mask types. This work demonstrates that the proposed mobile microscope system can be used as an assistant for face mask being used, which may play a positive role in fighting against COVID-19.
Rapid progress in deep learning is continuously making it easier and cheaper to generate video forgeries. Hence, it becomes very important to have a reliable way of detecting these forgeries. This paper describes such an approach for various tampering scenarios. The problem is modelled as a per-frame binary classification task. We propose to use transfer learning from face recognition task to improve tampering detection on many different facial manipulation scenarios. Furthermore, in low resolution settings, where single frame detection performs poorly, we try to make use of neighboring frames for middle frame classification. We evaluate both approaches on the public FaceForensics benchmark, achieving state of the art accuracy.
We propose a method for detecting face swapping and other identity manipulations in single images. Face swapping methods, such as DeepFake, manipulate the face region, aiming to adjust the face to the appearance of its context, while leaving the context unchanged. We show that this modus operandi produces discrepancies between the two regions. These discrepancies offer exploitable telltale signs of manipulation. Our approach involves two networks: (i) a face identification network that considers the face region bounded by a tight semantic segmentation, and (ii) a context recognition network that considers the face context (e.g., hair, ears, neck). We describe a method which uses the recognition signals from our two networks to detect such discrepancies, providing a complementary detection signal that improves conventional real vs. fake classifiers commonly used for detecting fake images. Our method achieves state of the art results on the FaceForensics++, Celeb-DF-v2, and DFDC benchmarks for face manipulation detection, and even generalizes to detect fakes produced by unseen methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا