Do you want to publish a course? Click here

DeepFake Detection Based on the Discrepancy Between the Face and its Context

197   0   0.0 ( 0 )
 Added by Yuval Nirkin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a method for detecting face swapping and other identity manipulations in single images. Face swapping methods, such as DeepFake, manipulate the face region, aiming to adjust the face to the appearance of its context, while leaving the context unchanged. We show that this modus operandi produces discrepancies between the two regions. These discrepancies offer exploitable telltale signs of manipulation. Our approach involves two networks: (i) a face identification network that considers the face region bounded by a tight semantic segmentation, and (ii) a context recognition network that considers the face context (e.g., hair, ears, neck). We describe a method which uses the recognition signals from our two networks to detect such discrepancies, providing a complementary detection signal that improves conventional real vs. fake classifiers commonly used for detecting fake images. Our method achieves state of the art results on the FaceForensics++, Celeb-DF-v2, and DFDC benchmarks for face manipulation detection, and even generalizes to detect fakes produced by unseen methods.



rate research

Read More

Coronavirus Disease 2019 (COVID-19) has spread all over the world since it broke out massively in December 2019, which has caused a large loss to the whole world. Both the confirmed cases and death cases have reached a relatively frightening number. Syndrome coronaviruses 2 (SARS-CoV-2), the cause of COVID-19, can be transmitted by small respiratory droplets. To curb its spread at the source, wearing masks is a convenient and effective measure. In most cases, people use face masks in a high-frequent but short-time way. Aimed at solving the problem that we dont know which service stage of the mask belongs to, we propose a detection system based on the mobile phone. We first extract four features from the GLCMs of the face masks micro-photos. Next, a three-result detection system is accomplished by using KNN algorithm. The results of validation experiments show that our system can reach a precision of 82.87% (standard deviation=8.5%) on the testing dataset. In future work, we plan to expand the detection objects to more mask types. This work demonstrates that the proposed mobile microscope system can be used as an assistant for face mask being used, which may play a positive role in fighting against COVID-19.
Recently, Adaboost has been widely used to improve the accuracy of any given learning algorithm. In this paper we focus on designing an algorithm to employ combination of Adaboost with Support Vector Machine as weak component classifiers to be used in Face Detection Task. To obtain a set of effective SVM-weaklearner Classifier, this algorithm adaptively adjusts the kernel parameter in SVM instead of using a fixed one. Proposed combination outperforms in generalization in comparison with SVM on imbalanced classification problem. The proposed here method is compared, in terms of classification accuracy, to other commonly used Adaboost methods, such as Decision Trees and Neural Networks, on CMU+MIT face database. Results indicate that the performance of the proposed method is overall superior to previous Adaboost approaches.
DeepFake detection has so far been dominated by ``artifact-driven methods and the detection performance significantly degrades when either the type of image artifacts is unknown or the artifacts are simply too hard to find. In this work, we present an alternative approach: Identity-Driven DeepFake Detection. Our approach takes as input the suspect image/video as well as the target identity information (a reference image or video). We output a decision on whether the identity in the suspect image/video is the same as the target identity. Our motivation is to prevent the most common and harmful DeepFakes that spread false information of a targeted person. The identity-based approach is fundamentally different in that it does not attempt to detect image artifacts. Instead, it focuses on whether the identity in the suspect image/video is true. To facilitate research on identity-based detection, we present a new large scale dataset ``Vox-DeepFake, in which each suspect content is associated with multiple reference images collected from videos of a target identity. We also present a simple identity-based detection algorithm called the OuterFace, which may serve as a baseline for further research. Even trained without fake videos, the OuterFace algorithm achieves superior detection accuracy and generalizes well to different DeepFake methods, and is robust with respect to video degradation techniques -- a performance not achievable with existing detection algorithms.
Face forgery by deepfake is widely spread over the internet and has raised severe societal concerns. Recently, how to detect such forgery contents has become a hot research topic and many deepfake detection methods have been proposed. Most of them model deepfake detection as a vanilla binary classification problem, i.e, first use a backbone network to extract a global feature and then feed it into a binary classifier (real/fake). But since the difference between the real and fake images in this task is often subtle and local, we argue this vanilla solution is not optimal. In this paper, we instead formulate deepfake detection as a fine-grained classification problem and propose a new multi-attentional deepfake detection network. Specifically, it consists of three key components: 1) multiple spatial attention heads to make the network attend to different local parts; 2) textural feature enhancement block to zoom in the subtle artifacts in shallow features; 3) aggregate the low-level textural feature and high-level semantic features guided by the attention maps. Moreover, to address the learning difficulty of this network, we further introduce a new regional independence loss and an attention guided data augmentation strategy. Through extensive experiments on different datasets, we demonstrate the superiority of our method over the vanilla binary classifier counterparts, and achieve state-of-the-art performance.
Existing deepfake-detection methods focus on passive detection, i.e., they detect fake face images via exploiting the artifacts produced during deepfake manipulation. A key limitation of passive detection is that it cannot detect fake faces that are generated by new deepfake generation methods. In this work, we propose FaceGuard, a proactive deepfake-detection framework. FaceGuard embeds a watermark into a real face image before it is published on social media. Given a face image that claims to be an individual (e.g., Nicolas Cage), FaceGuard extracts a watermark from it and predicts the face image to be fake if the extracted watermark does not match well with the individuals ground truth one. A key component of FaceGuard is a new deep-learning-based watermarking method, which is 1) robust to normal image post-processing such as JPEG compression, Gaussian blurring, cropping, and resizing, but 2) fragile to deepfake manipulation. Our evaluation on multiple datasets shows that FaceGuard can detect deepfakes accurately and outperforms existing methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا