Do you want to publish a course? Click here

Performance of bare high-purity germanium detectors in liquid argon for the GERDA experiment

132   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

The GERmanium Detector Array, GERDA, will search for neutrinoless double beta decay in 76Ge at the National Gran Sasso Laboratory of the INFN. Bare high-purity germanium detectors enriched in 76Ge will be submerged in liquid argon serving simultaneously as a shield against external radioactivity and as a cooling medium. In GERDA Phase-I, reprocessed enriched-Ge detectors, which were previously operated by the Heidelberg-Moscow and IGEX collaborations, will be redeployed. Before operating the enriched detectors, tests are performed with non-enriched bare HPGe detectors in the GERDA underground Detector Laboratory to test the Phase-I detector assembly, the detector handling protocols, the refurbishment technology and to study the long-term stability in liquid argon. The leakage currents in liquid argon and liquid nitrogen have been extensively studied under varying gamma irradiation conditions. In total three non-enriched high-purity p-type prototype germanium detectors have been operated successfully. The detector performance is stable over the long-term measurements. For the first time, performance of bare high-purity germanium detectors in liquid argon is reported.



rate research

Read More

79 - R. Panth , J. Liu , I. Abt 2020
For the first time, planar high-purity germanium detectors with thin amorphous germanium contacts were successfully operated directly in liquid nitrogen and liquid argon in a cryostat at the Max-Planck-Institut fuer Physics in Munich. The detectors were fabricated at the Lawrence Berkeley National Laboratory and the University of South Dakota, using crystals grown at the University of South Dakota. They survived long-distance transportation and multiple thermal cycles in both cryogenic liquids and showed reasonable leakage currents and spectroscopic performance. Also discussed are the pros and cons of using thin amorphous semiconductor materials as an alternative contact technology in large-scale germanium experiments searching for physics beyond the Standard Model.
Large, high-purity, germanium (HPGe) detectors are needed for neutrinoless double-beta decay and dark matter experiments. Currently, large (> 4 inches in diameter) HPGe crystals can be grown at the University of South Dakota (USD). We verify that the quality of the grown crystals is sufficient for use in large detectors by fabricating and characterizing smaller HPGe detectors made from those crystals. We report the results from eight detectors fabricated over six months using crystals grown at USD. Amorphous germanium (a-Ge) contacts are used for blocking both electrons and holes. Two types of geometry were used to fabricate HPGe detectors. As a result, the fabrication process of small planar detectors at USD is discussed in great detail. The impact of the procedure and geometry on the detector performance was analyzed for eight detectors. We characterized the detectors by measuring the leakage current, capacitance, and energy resolution at 662 keV with a Cs-137 source. Four detectors show good performance, which indicates that crystals grown at USD are suitable for making HPGe detectors.
Low background experiments need a suppression of cosmogenically induced events. The GERDA experiment located at LNGS is searching for the neutrinless double beta decay of $^{76}$Ge. It is equipped with an active muon veto the main part of which is a water Cherenkov veto with 66 PMTs in the watertank surrounding the GERDA cryostat. With this system 806 live days have been recorded, 491 days were combined muon-germanium data. A muon detection efficiency of $varepsilon_{mu d}=(99.935pm0.015)$ % was found in a Monte Carlo simulation for the muons depositing energy in the germanium detectors. By examining coincident muon-germanium events a rejection efficiency of $varepsilon_{mu r}=(99.2_{-0.4}^{+0.3})$ % was found. Without veto condition the muons by themselves would cause a background index of $textrm{BI}_{mu}=(3.16 pm 0.85)times10^{-3}$ cts/(keV$cdot$kg$cdot$yr) at $Q_{betabeta}$.
The Liquid Argon Purity Demonstrator was an R&D test stand designed to determine if electron drift lifetimes adequate for large neutrino detectors could be achieved without first evacuating the cryostat. We describe here the cryogenic system, its operations, and the apparatus used to determine the contaminant levels in the argon and to measure the electron drift lifetime. The liquid purity obtained by this system was facilitated by a gaseous argon purge. Additionally, gaseous impurities from the ullage were prevented from entering the liquid at the gas-liquid interface by condensing the gas and filtering the resulting liquid before returning to the cryostat. The measured electron drift lifetime in this test was greater than 6 ms, sustained over several periods of many weeks. Measurements of the temperature profile in the argon, to assess convective flow and boiling, were also made and are compared to simulation.
Impurities in noble liquid detectors used for neutrino and dark matter experiments can significantly impact the quality of data. We present an experimentally verified model for describing the dynamics of impurity distributions in liquid argon (LAr) detectors. The model considers sources, sinks, and transport of impurities within and between the gas and liquid argon phases. Measurements of oxygen concentrations in a 20-L LAr multi-purpose test stand are compared to calculations made with this model to show that an accurate description of the concentrations under various operational conditions can be obtained. A result of this analysis is a determination of Henrys coefficient for oxygen in LAr. These calculations also show that some processes have small effects on the impurity dynamics and excluding them yields a solution as a sum of two exponential terms. This solution provides a simple way to extract Henrys coefficient with negligible approximation error. It is applied to the data and the Henrys coefficient for oxygen in LAr is obtained as 0.84$^{+0.09}_{-0.05}$, consistent with literature results. Based on the analysis of the data with the model, we further suggest that, for a large liquid argon detector, barriers to flow (baffles) installed in the gas phase to restrict flow can help reduce the ultimate impurity concentration in the LAr.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا