Do you want to publish a course? Click here

Magnetic Structure and Interactions in the Quasi-1D Antiferromagnet CaV$_2$O$_4$

464   0   0.0 ( 0 )
 Added by Oliver Pieper
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

CaV$_2$O$_4$ is a spin-1 antiferromagnet, where the magnetic vanadium ions are arranged on quasi-one-dimensional (1D) zig-zag chains with potentially frustrated antiferromagnetic exchange interactions. High temperature susceptibility and single-crystal neutron diffraction measurements are used to deduce the non-collinear magnetic structure, dominant exchange interactions and orbital configurations. The results suggest that at high temperatures CaV$_2$O$_4$ behaves as a Haldane chain, but at low temperatures, orbital ordering lifts the frustration and it becomes a spin-1 ladder.



rate research

Read More

Calcium vanadate CaV$_2$O$_4$ has a crystal structure of quasi-one-dimensional zigzag chains composed of orbital-active V$^{3+}$ ions and undergoes successive structural and antiferromagnetic phase transitions at $T_ssim 140$ K and $T_N sim 70$ K, respectively. We perform ultrasound velocity measurements on a single crystal of CaV$_2$O$_4$. The temperature dependence of its shear elastic moduli exhibits huge Curie-type softening upon cooling that emerges above and below $T_s$ depending on the elastic mode. The softening above $T_s$ suggests the presence of either onsite Jahn-Teller-type or intersite ferro-type orbital fluctuations in the two inequivalent V$^{3+}$ zigzag chains. The softening below $T_s$ suggests the occurrence of a dimensional spin-state crossover, from quasi-one to three, that is driven by the spin-lattice coupling along the inter-zigzag-chain orthogonal direction. The successive emergence of the orbital- and spin-driven lattice instabilities above and below $T_s$, respectively, is unique to the orbital-spin zigzag chain system of CaV$_2$O$_4$.
Magnetization measurements on single-crystal cubic SrCuTe$_2$O$_6$ with an applied magnetic field of along three inequivalent high symmetry directions $[100]$, $[110]$, and $[111]$ reveal weak magnetic anisotropy. The fits of the magnetic susceptibility to the result from a quantum Monte Carlo simulation on the Heisenberg spin-chain model, where the chain is formed via the dominant third-nearest-neighbor exchange interaction $J_3$, yield the intra-chain interaction $(J_3/k_B)$ between 50.12(7) K for the applied field along $[110]$ and 52.5(2) K along $[100]$ with about the same $g$-factor of 2.2. Single-crystal neutron diffraction unveils the transition to the magnetic ordered state as evidenced by the onset of the magnetic Bragg intensity at $T_textrm{N1}=5.25(9)$ K with no anomaly of the second transition at $T_textrm{N2}$ reported previously. Based on irreducible representation theory and magnetic space group analysis of powder and single-crystal neutron diffraction data, the magnetic structure in the Shubnikov space group $P4_132$, where the Cu$^{2+}$~$S=1/2$ spins antiferromagnetically align in the direction perpendicular to the spin chain, is proposed. The measured ordered moment of $0.52(6)~mu_B$, which represents 48% reduction from the expected value of $1~mu_B$, suggests the remaining influence of frustration resulting from the $J_1$ and $J_2$ bonds.
We report on NMR studies of the quasi one--dimensional (1D) antiferromagnetic $S=1/2$ chain cuprate LiCuVO$_4$ in magnetic fields $H$ up to $mu_0H$ = 30 T ($approx 70$% of the saturation field $H_{rm sat}$). NMR spectra in fields higher than $H_{rm c2}$ ($mu_0H_{rm c2} approx 7.5$ T) and temperatures $T<T_{rm N}$ can be described within the model of a spin-modulated phase in which the magnetic moments are aligned parallel to the applied field $H$ and their values alternate sinusoidally along the magnetic chains. Based on theoretical concepts about magnetically frustrated 1D chains, the field dependence of the modulation strength of the magnetic structure is deduced from our experiments. Relaxation time $T_2$ measurements of the $^{51}$V nuclei show that $T_2$ depends on the particular position of the probing $^{51}$V nucleus with respect to the magnetic copper moments within the 1D chains: the largest $T_2$ value is observed for the vanadium nuclei which are very next to the magnetic Cu$^{2+}$ ion with largest ordered magnetic moment. This observation is in agreement with the expectation for the spin-modulated magnetic structure. The $(H,T)$ magnetic phase diagram of LiCuVO$_4$ is discussed.
Single crystal neutron diffraction, inelastic neutron scattering and electron spin resonance experiments are used to study the magnetic structure and spin waves in Pb$_2$VO(PO$_4$)$_2$, a prototypical layered $S=1/2$ ferromagnet with frustrating next nearest neighbor antiferromagnetic interactions. The observed excitation spectrum is found to be inconsistent with a simple square lattice model previously proposed for this material. At least four distinct exchange coupling constants are required to reproduce the measured spin wave dispersion. The degree of magnetic frustration is correspondingly revised and found to be substantially smaller than in all previous estimates.
The A-site spinel material, CoAl2O4, is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which is predicted to contain unique incommensurate or `spin-spiral liquid ground states. Our previous single-crystal neutron scattering study instead classified it as a `kinetically-inhibited antiferromagnet, where the long ranged correlations of a collinear Neel ground state are blocked by the freezing of domain wall motion below a first-order phase transition at T* = 6.5 K. The current paper expands on our original results in several important ways. New elastic and inelastic neutron measurements are presented that show our initial conclusions are affected by neither the sample measured nor the instrument resolution, while measurements to temperatures as low as T = 250 mK limit the possible role being played by low-lying thermal excitations. Polarized diffuse neutron measurements confirm reports of short-range antiferromagnetic correlations and diffuse streaks of scattering, but major diffuse features are explained as signatures of overlapping critical correlations between neighboring Brillouin zones. Finally, and critically, this paper presents detailed elastic and inelastic measurements of magnetic correlations in a single-crystal of MnAl2O4, which acts as an unfrustrated analogue to CoAl2O4. The unfrustrated material is shown to have a classical continuous phase transition to Neel order at T_N = 39 K, with collective spinwave excitations and Lorentzian-like critical correlations which diverge at the transition. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. The higher level of cation inversion in the MnAl2O4 sample indicates that this novel behavior is primarily an effect of greater next-nearest-neighbor exchange.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا