Do you want to publish a course? Click here

Revisiting the ground state of CoAl$_2$O$_4$: comparison to the conventional antiferromagnet MnAl$_2$O$_4$

106   0   0.0 ( 0 )
 Added by Gregory MacDougall
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The A-site spinel material, CoAl2O4, is a physical realization of the frustrated diamond-lattice antiferromagnet, a model in which is predicted to contain unique incommensurate or `spin-spiral liquid ground states. Our previous single-crystal neutron scattering study instead classified it as a `kinetically-inhibited antiferromagnet, where the long ranged correlations of a collinear Neel ground state are blocked by the freezing of domain wall motion below a first-order phase transition at T* = 6.5 K. The current paper expands on our original results in several important ways. New elastic and inelastic neutron measurements are presented that show our initial conclusions are affected by neither the sample measured nor the instrument resolution, while measurements to temperatures as low as T = 250 mK limit the possible role being played by low-lying thermal excitations. Polarized diffuse neutron measurements confirm reports of short-range antiferromagnetic correlations and diffuse streaks of scattering, but major diffuse features are explained as signatures of overlapping critical correlations between neighboring Brillouin zones. Finally, and critically, this paper presents detailed elastic and inelastic measurements of magnetic correlations in a single-crystal of MnAl2O4, which acts as an unfrustrated analogue to CoAl2O4. The unfrustrated material is shown to have a classical continuous phase transition to Neel order at T_N = 39 K, with collective spinwave excitations and Lorentzian-like critical correlations which diverge at the transition. Direct comparison between the two compounds indicates that CoAl2O4 is unique, not in the nature of high-temperature diffuse correlations, but rather in the nature of the frozen state below T*. The higher level of cation inversion in the MnAl2O4 sample indicates that this novel behavior is primarily an effect of greater next-nearest-neighbor exchange.



rate research

Read More

Magnetic, transport, and specific heat measurements have been performed on layered metallic oxide Na$_{1.5}$Co$_2$O$_4$ as a function of temperature $T$. Below a characteristic temperature $T^*$=30$-$40 K, electrical resistivity shows a metallic conductivity with a $T^2$ behavior and magnetic susceptibility deviates from the Curie-Weiss behavior showing a broad peak at $sim$14 K. The electronic specific heat coefficient $gamma$ is $sim$60 mJ/molK$^2$ at 2 K. No evidence for magnetic ordering is found. These behaviors suggest the formation of mass-enhanced Fermi liquid ground state analogous to that in $d$-electron heavy fermion compound LiV$_2$O$_4$.
CaV$_2$O$_4$ is a spin-1 antiferromagnet, where the magnetic vanadium ions are arranged on quasi-one-dimensional (1D) zig-zag chains with potentially frustrated antiferromagnetic exchange interactions. High temperature susceptibility and single-crystal neutron diffraction measurements are used to deduce the non-collinear magnetic structure, dominant exchange interactions and orbital configurations. The results suggest that at high temperatures CaV$_2$O$_4$ behaves as a Haldane chain, but at low temperatures, orbital ordering lifts the frustration and it becomes a spin-1 ladder.
Muon spin relaxation ($mu$SR) measurements were carried out on SrDy$_2$O$_4$, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from $T=300$ K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at $T=20$ mK indicates that SrDy$_2$O$_4$ features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of $mu_0H=2$ T, a non-relaxing asymmetry contribution appears below $T=6$ K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.
Magnetic excitations of the recently discovered frustrated spin-1/2 two-leg ladder system Li$_2$Cu$_2$O(SO$_4$)$_2$ are investigated using inelastic neutron scattering, magnetic susceptibility and infrared absorption measurements. Despite the presence of a magnetic dimerization concomitant with the tetragonal-to-triclinic structural distortion occurring below 125 K, neutron scattering experiments reveal the presence of dispersive triplet excitations above a spin gap of $Delta = 10.6$ meV at 1.5 K, a value consistent with the estimates extracted from magnetic susceptibility. The likely detection of these spin excitations in infrared spectroscopy is explained by invoking a dynamic Dzyaloshinskii-Moriya mechanism in which light is coupled to the dimer singlet-to-triplet transition through an optical phonon. These results are qualitatively explained by exact diagonalization and higher-order perturbation calculations carried out on the basis of the dimerized spin Hamiltonian derived from first-principles.
Low-temperature magnetic resonance study of the quasi-two-dimensional antiferromagnet Cu(en)(H$_2$O)$_2$SO$_4$ (en = C$_2$H$_8$N$_2$) was performed down to 0.45~K. This compound orders antiferromagnetically at 0.9K. The analysis of the resonance data within the hydrodynamic approach allowed to identify anisotropy axes and to estimate the anisotropy parameters for the antiferromagnetic phase. Dipolar spin-spin coupling turns out to be the main contribution to the anisotropy of the antiferromagnetic phase. The splitting of the resonance modes and its non-monotonous dependency on the applied frequency was observed below 0.6K in all three field orientations. Several models were discussed to explain the origin of the nontrivial splitting and the existence of inequivalent magnetic subsystems in Cu(en)(H$_2$O)$_2$SO$_4$ was chosen as the most probable source.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا