No Arabic abstract
Calcium vanadate CaV$_2$O$_4$ has a crystal structure of quasi-one-dimensional zigzag chains composed of orbital-active V$^{3+}$ ions and undergoes successive structural and antiferromagnetic phase transitions at $T_ssim 140$ K and $T_N sim 70$ K, respectively. We perform ultrasound velocity measurements on a single crystal of CaV$_2$O$_4$. The temperature dependence of its shear elastic moduli exhibits huge Curie-type softening upon cooling that emerges above and below $T_s$ depending on the elastic mode. The softening above $T_s$ suggests the presence of either onsite Jahn-Teller-type or intersite ferro-type orbital fluctuations in the two inequivalent V$^{3+}$ zigzag chains. The softening below $T_s$ suggests the occurrence of a dimensional spin-state crossover, from quasi-one to three, that is driven by the spin-lattice coupling along the inter-zigzag-chain orthogonal direction. The successive emergence of the orbital- and spin-driven lattice instabilities above and below $T_s$, respectively, is unique to the orbital-spin zigzag chain system of CaV$_2$O$_4$.
CaV$_2$O$_4$ is a spin-1 antiferromagnet, where the magnetic vanadium ions are arranged on quasi-one-dimensional (1D) zig-zag chains with potentially frustrated antiferromagnetic exchange interactions. High temperature susceptibility and single-crystal neutron diffraction measurements are used to deduce the non-collinear magnetic structure, dominant exchange interactions and orbital configurations. The results suggest that at high temperatures CaV$_2$O$_4$ behaves as a Haldane chain, but at low temperatures, orbital ordering lifts the frustration and it becomes a spin-1 ladder.
Ultrasound velocity measurements of the orbital-degenerate frustrated spinel MgV$_2$O$_4$ are performed in the high-purity single crystal which exhibits successive structural and antiferromagnetic phase transitions, and in the disorder-introduced single crystal which exhibits spin-glass-like behavior. The measurements reveal that two-types of unusual temperature dependence of the elastic moduli coexist in the cubic paramagnetic phase, which are resolved by magnetic-field and disorder sensitivities: huge Curie-type softening with decreasing temperature, and concave temperature dependence with a characteristic minimum. These elastic anomalies suggest the coupling of lattice to coexisting orbital fluctuations and orbital-spin-coupled excitations.
We report $^{51}$V nuclear magnetic resonance (NMR) and inelastic neutron scattering (INS) measurements on a quasi-1D antiferromagnet BaCo$_2$V$_2$O$_8$ under transverse field along the [010] direction. The scaling behavior of the spin-lattice relaxation rate above the N{e}el temperatures unveils a 1D quantum critical point (QCP) at $H_c^{1D}approx 4.7$ T, which is masked by the 3D magnetic order. With the aid of accurate analytical analysis and numerical calculations, we show that the zone center INS spectrum at $H_c^{1D}$ is precisely described by the pattern of the 1D quantum Ising model in a magnetic field, a class of universality described in terms of the exceptional $E_8$ Lie algebra. These excitations keep to be non-diffusive over a certain field range when the system is away from the 1D QCP. Our results provide an unambiguous experimental realization of the massive $E_8$ phase in the compound, and open new experimental route for exploring the dynamics of quantum integrable systems as well as physics beyond integrability.
We report the magnetization ($chi$, $M$), specific heat ($C_{text{P}}$), and neutron powder diffraction results on a quasi-two-dimensional $S$ = 2 square lattice antiferromagnet Ba$_2$FeSi$_2$O$_7$ consisting of FeO$_4$ tetragons with a large compressive distortion (27%). Despite of the quasi-two-dimensional lattice structure, both $chi$ and $C_{text{P}}$ present three dimensional magnetic long-range order below the Neel temperature $T_{text{N}}$ = 5.2 K. Neutron diffraction data shows a collinear $Q_{m}$ = (1,0,0.5) antiferromagnetic (AFM) structure with the in-plane ordered magnetic moment suppressed by 26% below $T_{text{N}}$. Both the AFM structure and the suppressed moments are well explained by the Monte Carlo simulation with a large single-ion ab-plane anisotropy $D$ = 1.4 meV and a rather small in-plane Heisenberg exchange $J_{text{intra}}$ = 0.15 meV. The characteristic two dimensional spin fluctuations can be recognized in the magnetic entropy release and diffuse scattering above $T_{text{N}}$. This new quasi-2D magnetic system also displays unusual non-monotonic dependence of the $T_{text{N}}$ as a function of magnetic field $H$.
Ultrasound velocity measurements of the orbitally-frustrated GeCo$_2$O$_4$ reveal unusual elastic instabilities due to the phonon-spin coupling within the antiferromagnetic phase. Shear moduli exhibit anomalies arising from the coupling to short-range ferromagnetic excitations. Diplike anomalies in the magnetic-field dependence of elastic moduli reveal magnetic-field-induced orbital order-order transitions. These results strongly suggest the presence of geometrical orbital frustration which causes novel orbital phenomena within the antiferromagnetic phase.