No Arabic abstract
We construct and study an algebraic theory which closely approximates the theory of power operations for Morava E-theory, extending previous work of Charles Rezk in a way that takes completions into account. These algebraic structures are made explicit in the case of K-theory. Methodologically, we emphasize the utility of flat modules in this context, and prove a general version of Lazards flatness criterion for module spectra over associative ring spectra.
The users guide provides a behind-the-scenes look at the paper of that title.
Explicit calculations of the algebraic theory of power operations for a specific Morava E-theory spectrum are given, without detailed proofs.
Let $A$ be a finite abelian $p$ group of rank at least $2$. We show that $E^0(BA)/I_{tr}$, the quotient of the Morava $E$-cohomology of $A$ by the ideal generated by the image of the transfers along all proper subgroups, contains $p$-torsion. The proof makes use of transchromatic character theory.
We establish an equivalence of homotopy theories between symmetric monoidal bicategories and connective spectra. For this, we develop the theory of $Gamma$-objects in 2-categories. In the course of the proof we establish strictfication results of independent interest for symmetric monoidal bicategories and for diagrams of 2-categories.
The purpose of this foundational paper is to introduce various notions and constructions in order to develop the homotopy theory for differential graded operads over any ring. The main new idea is to consider the action of the symmetric groups as part of the defining structure of an operad and not as the underlying category. We introduce a new dual category of higher cooperads, a new higher bar-cobar adjunction with the category of operads, and a new higher notion of homotopy operads, for which we establish the relevant homotopy properties. For instance, the higher bar-cobar construction provides us with a cofibrant replacement functor for operads over any ring. All these constructions are produced conceptually by applying the curved Koszul duality for colored operads. This paper is a first step toward a new Koszul duality theory for operads, where the action of the symmetric groups is properly taken into account.