Do you want to publish a course? Click here

Orientability in Yang-Mills Theory over Nonorientable Surfaces

147   0   0.0 ( 0 )
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In arXiv:math/0605587, the first two authors have constructed a gauge-equivariant Morse stratification on the space of connections on a principal U(n)-bundle over a connected, closed, nonorientable surface. This space can be identified with the real locus of the space of connections on the pullback of this bundle over the orientable double cover of this nonorientable surface. In this context, the normal bundles to the Morse strata are real vector bundles. We show that these bundles, and their associated homotopy orbit bundles, are orientable for any n when the nonorientable surface is not homeomorphic to the Klein bottle, and for n<4 when the nonorientable surface is the Klein bottle. We also derive similar orientability results when the structure group is SU(n).



rate research

Read More

292 - Daniel A. Ramras 2018
In this paper we explain how Morse theory for the Yang-Mills functional can be used to prove an analogue, for surface groups, of the Atiyah-Segal theorem. Classically, the Atiyah-Segal theorem relates the representation ring R(Gamma) of a compact Lie group $Gamma$ to the complex K-theory of the classifying space $BGamma$. For infinite discrete groups, it is necessary to take into account deformations of representations, and with this in mind we replace the representation ring by Carlssons deformation $K$--theory spectrum $K (Gamma)$ (the homotopy-theoretical analogue of $R(Gamma)$). Our main theorem provides an isomorphism in homotopy $K_*(pi_1 Sigma)isom K^{-*}(Sigma)$ for all compact, aspherical surfaces $Sigma$ and all $*>0$. Combining this result with work of Tyler Lawson, we obtain homotopy theoretical information about the stable moduli space of flat unitary connections over surfaces.
61 - Tosiaki Kori 2017
Let A be the space of irreducible connections (vector potentials) over a SU(n)-principal bundle on a three-dimensional manifold M. Let T be the fiber product of the tangent and cotangent bundles of A. We endow T with a symplectic structure Omega which is represented by a vortex formula. The corresponding Poisson bracket will give a parallel formula discussed by Marsden-Weinstein in case of the electric-magnetic field, U(1)-gauge. We shall prove the Maxwell equations on T. The first two equations are the Hamilton equations of motion derived from the symplectic structure on T, and the second equations come from the moment maps of the action of the group of gauge transformations G. That is, these are conserved charges. The Yang-Mills field F is a subspace of T defined as the space with 0-charge. There is a Hamiltonian action of G on F. The moment map gives a new conserved quantity. Finally we shall give a symplectic variables (Clebsch parametrization) for (F, Omega)
We study the spectrum of anomalous dimensions of operators dual to giant graviton branes. The operators considered belong to the su$(2|3)$ sector of ${cal N}=4$ super Yang-Mills theory, have a bare dimension $sim N$ and are a linear combination of restricted Schur polynomials with $psim O(1)$ long rows or columns. In the same way that the operator mixing problem in the planar limit can be mapped to an integrable spin chain, we find that our problem maps to particles hopping on a lattice. The detailed form of the model is in precise agreement with the expected world volume dynamics of $p$ giant graviton branes, which is a U$(p)$ Yang-Mills theory. The lattice model we find has a number of noteworthy features. It is a lattice model with all-to-all sites interactions and quenched disorder.
68 - Peter Austing 2001
We discuss bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. We begin by finding convergence conditions for the partition and correlation functions. Moving on, we specialise to the SU(N) models with large N. In both the Yang-Mills and cohomological formulations, we find all quantities which are invariant under the supercharges. Finally, we apply the deformation method of Moore, Nekrasov and Shatashvili directly to the Yang-Mills model. We find a deformation of the action which generates mass terms for all the matrix fields whilst preserving some supersymmetry. This allows us to rigorously integrate over a BRST quartet and arrive at the well known formula of MNS.
We prove the Makeenko-Migdal equation for two-dimensional Euclidean Yang-Mills theory on an arbitrary compact surface, possibly with boundary. In particular, we show that two of the proofs given by the first, third, and fourth authors for the plane case extend essentially without change to compact surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا