Do you want to publish a course? Click here

Overview of the lithium problem in metal-poor stars and new results on 6Li

108   0   0.0 ( 0 )
 Added by Piercarlo Bonifacio
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two problems are discussed here. The first one is the 0.4 dex discrepancy between the 7Li abundance derived from the spectra of metal-poor halo stars on the one hand, and from Big Bang nucleosynthesis, based on the cosmological parameters constrained by the WMAP measurements, on the other hand. Lithium, indeed, can be depleted in the convection zone of unevolved stars. The understanding of the hydrodynamics of the crucial zone near the bottom of the convective envelope in dwarfs or turn-off stars of solar metallicity has recently made enormous progress with the inclusion of internal gravity waves. However, similar work for metal-poor stars is still lacking. Therefore it is not yet clear whether the depletion occurring in the metal-poor stars themselves is adequate to produce a 7Li plateau. The second problem pertains to the large amount of 6Li recently found in metal-poor halo stars. The convection-related asymmetry of the 7Li line could mimic the signal attributed so far to the weak blend of 6Li in the red wing of the 7Li line. Theoretical computations show that the signal generated by the asymmetry of 7Li is 2.0, 2.1, and 3.7 per cent for [Fe/H]= -3.0, -2.0, -1.0, respectively (Teff =6250 K and log g=4.0 [cgs]). In addition we re-investigate the statistical properties of the 6Li plateau and show that previous analyses were biased. Our conclusion is that the 6Li plateau can be reinterpreted in terms of intrinsic line asymmetry, without the need to invoke a contribution of 6Li. (abridged)



rate research

Read More

144 - M. Steffen , R. Cayrel , E. Caffau 2012
The presence of 6Li in the atmospheres of metal-poor halo stars is usually inferred from the detection of a subtle extra depression in the red wing of the 7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by convective flows in the photospheres of cool stars is almost indistinguishable from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D model atmospheres, ignoring the convection-induced line asymmetry, must therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential effect of the convective line asymmetry on the derived 6Li abundance as a function of effective temperature, gravity, and metallicity. As expected, we find that the asymmetry effect systematically reduces the resulting 6Li/7Li ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges between -0.005 and -0.020. When this purely theoretical correction is taken into account for the Asplund 2006 sample of stars, the number of significant 6Li detections decreases from 9 to 5 (2 sigma criterion), or from 5 to 2 (3 sigma criterion). We also present preliminary results of a re-analysis of high-resolution, high S/N spectra of individual metal-poor turn-off stars, to see whether the second Lithium problem actually disappears when accounting properly for convection and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD84937 seems to be the only significant (2 sigma) detection of 6Li. In view of our results, the existence of a 6Li plateau appears questionable.
The cosmological lithium problem, that is, the discrepancy between the lithium abundance predicted by the Big Bang nucleosynthesis and the one observed for the stars of the Spite plateau, is one of the long standing problems of modern astrophysics. Recent hints for a possible solution involve lithium burning induced by protostellar mass accretion on Spite plateau stars. The purpose of this paper is to analyze the effect of protostellar accretion on low metallicity low-mass stars with a focus on PMS lithium evolution. We computed the evolution from the protostar to the MS phase of accreting models with final masses of 0.7 and 0.8 M$_odot$, and three metallicities Z=0.0001, Z=0.0010, and Z=0.0050. The effects of changing the main parameters affecting accreting models, that is the accretion energy (cold versus hot accretion), the initial seed mass $M_{seed}$ and radius $R_{seed}$, and the mass accretion rate $dot{m}$, have been investigated in detail. As for the main stellar properties and the surface $^7 Li$ abundance, hot accretion models converge to standard non-accreting ones within 1 Myr, regardless of the actual value of $M_{seed}$, $R_{seed}$, and $dot{m}$. Also, cold accretion models with a relatively large $M_{seed}$ ($gtrsim 10~M_{jup}$) or $R_{seed}$ ($gtrsim 1~R_odot$) converge to standard non-accreting ones in less than about 10-20~Myr. A drastically different evolution occurs whenever a cold protostellar accretion process starts from small values of $M_{seed}$ and $R_{seed}$ ($M_{seed}sim 1~M_{jup}$, $R_{seed} lesssim 1~R_odot$). These models almost entirely skip the standard Hayashi track evolution and deplete Li before the end of the accretion phase. The exact amount of depletion depends on the actual combination of the accretion parameters ($dot{m}$, $M_{seed}$, and $R_{seed}$), achieving in some cases the complete exhaustion of Li in the whole star.
Very high-quality spectra of 24 metal-poor halo dwarfs and subgiants have been acquired with ESOs VLT/UVES for the purpose of determining Li isotopic abundances. The derived 1D, non-LTE 7Li abundances from the LiI 670.8nm line reveal a pronounced dependence on metallicity but with negligible scatter around this trend. Very good agreement is found between the abundances from the LiI 670.8nm line and the LiI 610.4nm line. The estimated primordial 7Li abundance is $7Li/H = 1.1-1.5 x 10^-10, which is a factor of three to four lower than predicted from standard Big Bang nucleosynthesis with the baryon density inferred from the cosmic microwave background. Interestingly, 6Li is detected in nine of our 24 stars at the >2sigma significance level. Our observations suggest the existence of a 6Li plateau at the level of log 6Li = 0.8; however, taking into account predictions for 6Li destruction during the pre-main sequence evolution tilts the plateau such that the 6Li abundances apparently increase with metallicity. Our most noteworthy result is the detection of 6Li in the very metal-poor star LP815-43. Such a high 6Li abundance during these early Galactic epochs is very difficult to achieve by Galactic cosmic ray spallation and alpha-fusion reactions. It is concluded that both Li isotopes have a pre-Galactic origin. Possible 6Li production channels include proto-galactic shocks and late-decaying or annihilating supersymmetric particles during the era of Big Bang nucleosynthesis. The presence of 6Li limits the possible degree of stellar 7Li depletion and thus sharpens the discrepancy with standard Big Bang nucleosynthesis.
313 - L. Sbordone 2012
We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progressive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The meltdown of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.
93 - P. Bonifacio 2006
Aims. This study aims to determine the level and constancy of the Spite plateau as definitively as possible from homogeneous high-quality VLT-UVES spectra of 19 of the most metal-poor dwarf stars known. Methods. Our high-resolution (R ~ 43000), high S/N spectra are analysed with OSMARCS 1D LTE model atmospheres and turbospectrum synthetic spectra to determine effective temperatures, surface gravities, and metallicities, as well as Li abundances for our stars. Results. Eliminating a cool subgiant and a spectroscopic binary, we find 8 stars to have -3.5 < [Fe/H] < -3.0 and 9 stars with -3.0 < [Fe/H] < -2.5. Our best value for the mean level of the plateau is A(Li) =2.10 +- 0.09. The scatter around the mean is entirely explained by our estimate of the observational error and does not allow for any intrinsic scatter in the Li abundances. In addition, we conclude that a systematic error of the order of 200 K in any of the current temperature scales remains possible. The iron excitation equilibria in our stars support our adopted temperature scale, which is based on a fit to wings of the Halpha line, and disfavour hotter scales, which would lead to a higher Li abundance, but fail to achieve excitation equilibrium for iron. Conclusions. We confirm the previously noted discrepancy between the Li abundance measured in extremely metal-poor turnoff stars and the primordial Li abundance predicted by standard Big-Bang nucleosynthesis models adopting the baryonic density inferred from WMAP. We discuss recent work explaining the discrepancy in terms of diffusion and find that uncertain temperature scales remain a major question. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا