Do you want to publish a course? Click here

Lithium abundances in extremely metal-poor turn-off stars

324   0   0.0 ( 0 )
 Added by Luca Sbordone
 Publication date 2012
  fields Physics
and research's language is English
 Authors L. Sbordone




Ask ChatGPT about the research

We discuss the current status of the sample of Lithium abundances in extremely metal poor (EMP) turn-off (TO) stars collected by our group, and compare it with the available literature results. In the last years, evidences have accumulated of a progressive disruption of the Spite plateau in stars of extremely low metallicity. What appears to be a flat, thin plateau above [Fe/H]sim-2.8 turns, at lower metallicities, into a broader distribution for which the plateau level constitutes the upper limit, but more and more stars show lower Li abundances. The sample we have collected currently counts abundances or upper limits for 44 EMP TO stars between [Fe/H]=-2.5 and -3.5, plus the ultra-metal poor star SDSS J102915+172927 at [Fe/H]=-4.9. The meltdown of the Spite plateau is quite evident and, at the current status of the sample, does not appear to be restricted to the cool end of the effective temperature distribution. SDSS J102915+172927 displays an extreme Li depletion that contrasts with its otherwise quite ordinary set of [X/Fe] ratios.



rate research

Read More

210 - Monique Spite 2010
Sulfur is important: the site of its formation is uncertain, and at very low metallicity the trend of [S/Fe] against [Fe/H] is controversial. Below [Fe/H]=-2.0, [S/Fe] remains constant or it decreases with [Fe/H], depending on the author and the multiplet used in the analysis. Moreover, although sulfur is not significantly bound in dust grains in the ISM, it seems to behave differently in DLAs and in old metal-poor stars. We aim to determine precise S abundance in a sample of extremely metal-poor stars taking into account NLTE and 3D effects. NLTE profiles of the lines of the multiplet 1 of SI have been computed using a new model atom for S. We find sulfur in EMP stars to behave like the other alpha-elements, with [S/Fe] remaining approximately constant for [Fe/H]<-3. However, [S/Mg] seems to decrease slightly as a function of [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are best matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as found also in DLAs. We obtain an upper limit on the abundance of sulfur, [S/Fe] < +0.5, for the ultra metal-poor star CS 22949-037. This, along with a previous reported measurement of zinc, argues against the conjecture that the light-element abundances pattern in this star, and, by analogy, the hyper metal-poor stars HE 0107-5240 and HE 1327-2326, are due to dust depletion.
Very high-quality spectra of 24 metal-poor halo dwarfs and subgiants have been acquired with ESOs VLT/UVES for the purpose of determining Li isotopic abundances. The derived 1D, non-LTE 7Li abundances from the LiI 670.8nm line reveal a pronounced dependence on metallicity but with negligible scatter around this trend. Very good agreement is found between the abundances from the LiI 670.8nm line and the LiI 610.4nm line. The estimated primordial 7Li abundance is $7Li/H = 1.1-1.5 x 10^-10, which is a factor of three to four lower than predicted from standard Big Bang nucleosynthesis with the baryon density inferred from the cosmic microwave background. Interestingly, 6Li is detected in nine of our 24 stars at the >2sigma significance level. Our observations suggest the existence of a 6Li plateau at the level of log 6Li = 0.8; however, taking into account predictions for 6Li destruction during the pre-main sequence evolution tilts the plateau such that the 6Li abundances apparently increase with metallicity. Our most noteworthy result is the detection of 6Li in the very metal-poor star LP815-43. Such a high 6Li abundance during these early Galactic epochs is very difficult to achieve by Galactic cosmic ray spallation and alpha-fusion reactions. It is concluded that both Li isotopes have a pre-Galactic origin. Possible 6Li production channels include proto-galactic shocks and late-decaying or annihilating supersymmetric particles during the era of Big Bang nucleosynthesis. The presence of 6Li limits the possible degree of stellar 7Li depletion and thus sharpens the discrepancy with standard Big Bang nucleosynthesis.
Extremely metal-poor stars are keys to understand the early evolution of our Galaxy. The ESO large programme TOPoS has been tailored to analyse a new set of metal-poor turn-off stars, whereas most of the previously known extremely metal-poor stars are giant stars. Sixty five turn-off stars (preselected from SDSS spectra) have been observed with the X-Shooter spectrograph at the ESO VLT Unit Telescope 2, to derive accurate and detailed abundances of magnesium, silicon, calcium, iron, strontium and barium. We analysed medium-resolution spectra (R ~ 10 000) obtained with the ESO X-Shooter spectrograph and computed the abundances of several alpha and neutron-capture elements using standard one-dimensional local thermodynamic equilibrium (1D LTE) model atmospheres. Our results confirms the super-solar [Mg/Fe] and [Ca/Fe] ratios in metal-poor turn-off stars as observed in metal-poor giant stars. We found a significant spread of the [alpha/Fe] ratios with several stars showing sub-solar [Ca/Fe] ratios. We could measure the abundance of strontium in 12 stars of the sample, leading to abundance ratios [Sr/Fe] around the Solar value. We detected barium in two stars of the sample. One of the stars (SDSS J114424-004658) shows both very high [Ba/Fe] and [Sr/Fe] abundance ratios (>1 dex).
93 - P. Bonifacio 2006
Aims. This study aims to determine the level and constancy of the Spite plateau as definitively as possible from homogeneous high-quality VLT-UVES spectra of 19 of the most metal-poor dwarf stars known. Methods. Our high-resolution (R ~ 43000), high S/N spectra are analysed with OSMARCS 1D LTE model atmospheres and turbospectrum synthetic spectra to determine effective temperatures, surface gravities, and metallicities, as well as Li abundances for our stars. Results. Eliminating a cool subgiant and a spectroscopic binary, we find 8 stars to have -3.5 < [Fe/H] < -3.0 and 9 stars with -3.0 < [Fe/H] < -2.5. Our best value for the mean level of the plateau is A(Li) =2.10 +- 0.09. The scatter around the mean is entirely explained by our estimate of the observational error and does not allow for any intrinsic scatter in the Li abundances. In addition, we conclude that a systematic error of the order of 200 K in any of the current temperature scales remains possible. The iron excitation equilibria in our stars support our adopted temperature scale, which is based on a fit to wings of the Halpha line, and disfavour hotter scales, which would lead to a higher Li abundance, but fail to achieve excitation equilibrium for iron. Conclusions. We confirm the previously noted discrepancy between the Li abundance measured in extremely metal-poor turnoff stars and the primordial Li abundance predicted by standard Big-Bang nucleosynthesis models adopting the baryonic density inferred from WMAP. We discuss recent work explaining the discrepancy in terms of diffusion and find that uncertain temperature scales remain a major question. (abridged)
Extremely metal-poor (EMP) stars are an integral piece in the puzzle that is the early Universe, and although anomolous subclasses of EMP stars such as carbon-enhanced metal-poor (CEMP) stars are well-studied, they make up less than half of all EMP stars with [Fe/H] $sim -3.0$. The amount of carbon depletion occurring on the red giant branch (carbon offset) is used to determine the evolutionary status of EMP stars, and this offset will differ between CEMP and normal EMP stars. The depletion mechanism employed in stellar models (from which carbon offfsets are derived) is very important, however the only widely available carbon offsets in the literature are derived from stellar models using a thermohaline mixing mechanism that cannot simultaneously match carbon and lithium abundances to observations for a single diffusion coeffcient. Our stellar evolution models utilise a modified thermohaline mixing model that can match carbon and lithium in the metal-poor globular cluster NGC 6397. We compare our models to the bulk of the EMP star sample at [Fe/H] $= -3$ and show that our modified models follow the trend of the observations and deplete less carbon compared to the standard thermohaline mixing theory. We conclude that stellar models that employ the standard thermohaline mixing formalism overestimate carbon offsets and hence CEMP star frequencies, particularly at metallicities where carbon-normal stars dominate the EMP star population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا