I review the basic observational properties of accreting millisecond pulsars that are important for understanding the physics involved in formation of their pulse profiles. I then discuss main effects responsible for shaping these profiles. Some analytical results that help to understand the results of simulations are presented. Constraints on the pulsar geometry and the neutron star equation of state obtained from the analysis of the pulse profiles are discussed.
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.
Timing noise in the data on accretion-powered millisecond pulsars (AMP) appears as irregular pulse phase jumps on timescales from hours to weeks. A large systematic phase drift is also observed in the first discovered AMP SAX J1808.4-3658. To study the origin of these timing features, we use here the data of the well studied 2002 outburst of SAX J1808.4-3658. We develop first a model for pulse profile formation accounting for the screening of the antipodal emitting spot by the accretion disk. We demonstrate that the variations of the visibility of the antipodal spot associated with the receding accretion disk cause a systematic shift in Fourier phases, observed together with the changes in the pulse form. We show that a strong secondary maximum can be observed only in a narrow intervals of inner disk radii, which explains the very short appearance of the double-peaked profiles in SAX J1808.4-3658. By directly fitting the pulse profile shapes with our model, we find that the main parameters of the emitting spot such as its mean latitude and longitude as well as the emissivity pattern change irregularly causing small shifts in pulse phase, and the strong profile variations are caused by the increasing inner disk radius. We finally notice that significant variations in the pulse profiles in the 2002 and 2008 outbursts of SAX J1808.4-3658 happen at fluxes differing by a factor of 2, which can be explained if the inner disk radius is not a simple function of the accretion rate, but depends on the previous history.
Measuring the spin of Accreting Neutron Stars is important because it can provide constraints on the Equation of State of ultra-dense matter. Particularly crucial to our physical understanding is the discovery of sub-millisecond pulsars, because this will immediately rule out many proposed models for the ground state of dense matter. So far, it has been impossible to accomplish this because, for still unknown reasons, only a small amount of Accreting Neutron Stars exhibit coherent pulsations. An intriguing explanation for the lack of pulsations is that they form only on neutron stars accreting with a very low average mass accretion rate. I have searched pulsations in the faintest persistent X-ray source known to date and I found no evidence for pulsations. The implications for accretion theory are very stringent, clearly showing that our understanding of the pulse formation process is not complete. I discuss which sources are optimal to continue the search of sub-ms pulsars and which are the new constraints that theoretical models need to explain to provide a complete description of these systems
During the last 10 years, INTEGRAL made a unique contribution to the study of accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14 sources now known of this class. Besides increasing the number of known AMXPs, INTEGRAL also carried out observations of these objects above 20 keV, substantially advancing our understanding of their behaviour. We present here a review of all the AMXPs observed with INTEGRAL and discuss the physical interpretation of their behaviour in the X-ray domain. We focus in particular on the lightcurve profile during outburst, as well as the timing, spectral, and thermonuclear type-I X-ray bursts properties.
Using the state-of-the-art SKA precursor, the MeerKAT radio telescope, we explore the limits to precision pulsar timing of millisecond pulsars achievable due to pulse stochasticity (jitter). We report new jitter measurements in 15 of the 29 pulsars in our sample and find that the levels of jitter can vary dramatically between them. For some, like the 2.2~ms pulsar PSR J2241--5236, we measure an implied jitter of just $sim$ 4~ns/hr, while others like the 3.9~ms PSR J0636--3044 are limited to $sim$ 100 ns/hr. While it is well known that jitter plays a central role to limiting the precision measurements of arrival times for high signal-to-noise ratio observations, its role in the measurement of dispersion measure (DM) has not been reported, particularly in broad-band observations. Using the exceptional sensitivity of MeerKAT, we explored this on the bright millisecond pulsar PSR J0437--4715 by exploring the DM of literally every pulse. We found that the derived single pulse DMs vary by typically 0.0085 cm$^{-3}$ pc from the mean, and that the best DM estimate is limited by the differential pulse jitter across the band. We postulate that all millisecond pulsars will have their own limit on DM precision which can only be overcome with longer integrations. Using high-time resolution filterbank data of 9 $mu$s, we also present a statistical analysis of single pulse phenomenology. Finally, we discuss optimization strategies for the MeerKAT pulsar timing program and its role in the context of the International Pulsar Timing Array (IPTA).