Do you want to publish a course? Click here

Searching Sub-Millisecond Pulsars in Accreting Neutron Stars

122   0   0.0 ( 0 )
 Added by Alessandro Patruno
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

Measuring the spin of Accreting Neutron Stars is important because it can provide constraints on the Equation of State of ultra-dense matter. Particularly crucial to our physical understanding is the discovery of sub-millisecond pulsars, because this will immediately rule out many proposed models for the ground state of dense matter. So far, it has been impossible to accomplish this because, for still unknown reasons, only a small amount of Accreting Neutron Stars exhibit coherent pulsations. An intriguing explanation for the lack of pulsations is that they form only on neutron stars accreting with a very low average mass accretion rate. I have searched pulsations in the faintest persistent X-ray source known to date and I found no evidence for pulsations. The implications for accretion theory are very stringent, clearly showing that our understanding of the pulse formation process is not complete. I discuss which sources are optimal to continue the search of sub-ms pulsars and which are the new constraints that theoretical models need to explain to provide a complete description of these systems



rate research

Read More

129 - A. Patruno 2012
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.
72 - Manuel Linares 2019
The maximum mass of a neutron star has important implications across multiple research fields, including astrophysics, nuclear physics and gravitational wave astronomy. Compact binary millisecond pulsars (with orbital periods shorter than about a day) are a rapidly-growing pulsar population, and provide a good opportunity to search for the most massive neutron stars. Applying a new method to measure the velocity of both sides of the companion star, we previously found that the compact binary millisecond pulsar PSR J2215+5135 hosts one of the most massive neutron stars known to date, with a mass of 2.27$pm$0.16 M$_odot$ (Linares, Shahbaz & Casares, 2018). We reexamine the properties of the 0.33 M$_odot$ companion star, heated by the pulsar, and argue that irradiation in this redback binary is extreme yet stable, symmetric and not necessarily produced by an extended source. We also review the neutron star mass distribution in light of this and more recent discoveries. We compile a list of all (nine) systems with published evidence for super-massive neutron stars, with masses above 2 M$_odot$. We find that four of them are compact binary millisecond pulsars (one black widow, two redbacks and one redback candidate). This shows that compact binary millisecond pulsars are key to constraining the maximum mass of a neutron star.
An understanding of spin frequency ($ u$) evolution of neutron stars in the low-mass X-ray binary (LMXB) phase is essential to explain the observed $ u$-distribution of millisecond pulsars (MSPs), and to probe the stellar and binary physics, including the possibility of continuous gravitational wave emission. Here, using numerical computations we conclude that $ u$ can evolve in two distinctly different modes, as $ u$ may approach a lower spin equilibrium value ($ u_{rm eq,per}$) for persistent accretion for a long-term average accretion rate ($dot{M}_{rm av}$) greater than a critical limit ($dot{M}_{rm av,crit}$), and may approach a higher effective spin equilibrium value ($ u_{rm eq,eff}$) for transient accretion for $dot{M}_{rm av} < dot{M}_{rm av,crit}$. For example, when $dot{M}_{rm av}$ falls below $dot{M}_{rm av,crit}$ for an initially persistent source, $ u$ increases considerably due to transient accretion, which is counterintuitive. We also find that, contrary to what was suggested, a fast or sudden decrease of $dot{M}_{rm av}$ to zero in the last part of the LMXB phase is not essential for the genesis of spin-powered MSPs, and neutron stars could spin up in this $dot{M}_{rm av}$-decreasing phase. Our findings imply that the traditional way of $ u$-evolution computation is inadequate in most cases, even for initially persistent sources, and may not even correctly estimate whether $ u$ increases or decreases.
In millisecond pulsars the existence of the Coriolis force allows the development of the so-called Rossby oscillations (r-modes) which are know to be unstable to emission of gravitational waves. These instabilities are mainly damped by the viscosity of the star or by the existence of a strong magnetic field. A fraction of the observed millisecond pulsars are known to be inside Low Mass X-ray Binaries (LMXBs), systems in which a neutron star (or a black hole) is accreting from a donor whose mass is smaller than 1 $M_odot$. Here we show that the r-mode instabilities can generate strong toroidal magnetic fields by inducing differential rotation. In this way we also provide an alternative scenario for the origin of the magnetars.
Accreting millisecond X-ray pulsars are known to provide a wealth of physical information during their successive states of outburst and quiescence. Based on the observed spin-up and spin-down rates of these objects it is possible, among other things, to infer the stellar magnetic field strength and test models of accretion disc flow. In this paper we consider the three accreting X-ray pulsars (XTE J1751-305, IGR J00291+5934, and SAX J1808.4-3658) with the best available timing data, and model their observed spin-up rates with the help of a collection of standard torque models that describe a magnetically-threaded accretion disc truncated at the magnetospheric radius. Whilst none of these models are able to explain the observational data, we find that the inclusion of the physically motivated phenomenological parameter $xi$, which controls the uncertainty in the location of the magnetospheric radius, leads to an enhanced disc-integrated accretion torque. These new torque models are compatible with the observed spin-up rates as well as the inferred magnetic fields of these objects provided that $xi approx 0.1-0.5$. Our results are supplemented with a discussion of the relevance of additional physics effects that include the presence of a multipolar magnetic field and general-relativistic gravity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا