Do you want to publish a course? Click here

Accreting millisecond X-ray pulsars: 10 years of INTEGRAL observations

192   0   0.0 ( 0 )
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the last 10 years, INTEGRAL made a unique contribution to the study of accreting millisecond X-ray pulsars (AMXPs), discovering three of the 14 sources now known of this class. Besides increasing the number of known AMXPs, INTEGRAL also carried out observations of these objects above 20 keV, substantially advancing our understanding of their behaviour. We present here a review of all the AMXPs observed with INTEGRAL and discuss the physical interpretation of their behaviour in the X-ray domain. We focus in particular on the lightcurve profile during outburst, as well as the timing, spectral, and thermonuclear type-I X-ray bursts properties.



rate research

Read More

136 - A. Patruno 2012
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.
Accreting millisecond X-ray pulsars are known to provide a wealth of physical information during their successive states of outburst and quiescence. Based on the observed spin-up and spin-down rates of these objects it is possible, among other things, to infer the stellar magnetic field strength and test models of accretion disc flow. In this paper we consider the three accreting X-ray pulsars (XTE J1751-305, IGR J00291+5934, and SAX J1808.4-3658) with the best available timing data, and model their observed spin-up rates with the help of a collection of standard torque models that describe a magnetically-threaded accretion disc truncated at the magnetospheric radius. Whilst none of these models are able to explain the observational data, we find that the inclusion of the physically motivated phenomenological parameter $xi$, which controls the uncertainty in the location of the magnetospheric radius, leads to an enhanced disc-integrated accretion torque. These new torque models are compatible with the observed spin-up rates as well as the inferred magnetic fields of these objects provided that $xi approx 0.1-0.5$. Our results are supplemented with a discussion of the relevance of additional physics effects that include the presence of a multipolar magnetic field and general-relativistic gravity.
In the last 25 years, a new generation of X-ray satellites imparted a significant leap forward in our knowledge of X-ray pulsars. The discovery of accreting and transitional millisecond pulsars proved that disk accretion can spin up a neutron star to a very high rotation speed. The detection of MeV-GeV pulsed emission from a few hundreds of rotation-powered pulsars probed particle acceleration in the outer magnetosphere, or even beyond. Also, a population of two dozens of magnetars has emerged. INTEGRAL played a central role to achieve these results by providing instruments with high temporal resolution up to the hard X-ray/soft gamma-ray band and a large field of view imager with good angular resolution to spot hard X-ray transients. In this article, we review the main contributions by INTEGRAL to our understanding of the pulsating hard X-ray sky, such as the discovery and characterization of several accreting and transitional millisecond pulsars, the generation of the first catalog of hard X-ray/soft gamma-ray rotation-powered pulsars, the detection of polarization in the hard X-ray emission from the Crab pulsar, and the discovery of persistent hard X-ray emission from several magnetars.
197 - S. Guillot , M. Kerr , P. S. Ray 2019
NICER observed several rotation-powered millisecond pulsars to search for or confirm the presence of X-ray pulsations. When broad and sine-like, these pulsations may indicate thermal emission from hot polar caps at the magnetic poles on the neutron star surface. We report confident detections ($ge4.7sigma$ after background filtering) of X-ray pulsations for five of the seven pulsars in our target sample: PSR J0614-3329, PSR J0636+5129, PSR J0751+1807, PSR J1012+5307, and PSR J2241-5236, while PSR J1552+5437 and PSR J1744-1134 remain undetected. Of those, only PSR J0751+1807 and PSR J1012+5307 had pulsations previously detected at the 1.7$sigma$ and almost 3$sigma$ confidence levels, respectively, in XMM-Newton data. All detected sources exhibit broad sine-like pulses, which are indicative of surface thermal radiation. As such, these MSPs are promising targets for future X-ray observations aimed at constraining the neutron star mass-radius relation and the dense matter equation of state using detailed pulse profile modeling. Furthermore, we find that three of the detected millisecond pulsars exhibit a significant phase offset between their X-ray and radio pulses.
Nuclear-powered X-ray millisecond pulsars are the third type of millisecond pulsars, which are powered by thermonuclear fusion processes. The corresponding brightness oscillations, known as burst oscillations, are observed during some thermonuclear X-ray bursts, when the burning and cooling accreted matter gives rise to an azimuthally asymmetric brightness pattern on the surface of the spinning neutron star. Apart from providing neutron star spin rates, this X-ray timing feature can be a useful tool to probe the fundamental physics of neutron star interior and surface. This chapter presents an overview of the relatively new field of nuclear-powered X-ray millisecond pulsars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا