No Arabic abstract
This proceedings describes the XFT stereo upgrade for the CDF Level 2 trigger system. Starting with the stereo finder boards, up to the XFT stereo track algorithim implementation in the Level 2 PC. This proceedings will discuss the effectiveness of the Level 2 Stereo track algorithm at achieving reduced trigger rates with high efficiencies during high luminosity running.
The LHCb experiment will operate at a luminosity of $2times10^{33}$ cm$^{-2}$s$^{-1}$ during LHC Run 3. At this rate the present readout and hardware Level-0 trigger become a limitation, especially for fully hadronic final states. In order to maintain a high signal efficiency the upgraded LHCb detector will deploy two novel concepts: a triggerless readout and a full software trigger.
The Fast Tracker (FTK) is a proposed upgrade to the ATLAS trigger system that will operate at full Level-1 output rates and provide high quality tracks reconstructed over the entire detector by the start of processing in Level-2. FTK solves the combinatorial challenge inherent to tracking by exploiting the massive parallelism of Associative Memories (AM) that can compare inner detector hits to millions of pre-calculated patterns simultaneously. The tracking problem within matched patterns is further simplified by using pre-computed linearized fitting constants and leveraging fast DSPs in modern commercial FPGAs. Overall, FTK is able to compute the helix parameters for all tracks in an event and apply quality cuts in approximately one millisecond. By employing a pipelined architecture, FTK is able to continuously operate at Level-1 rates without deadtime. The system design is defined and studied using ATLAS full simulation. Reconstruction quality is evaluated for single muon events with zero pileup, as well as WH events at the LHC design luminosity. FTK results are compared with the tracking capability of an offline algorithm.
The physics program at the Fermilab Tevatron Collider will continue to explore the high energy frontier of particle physics until the commissioning of the LHC at CERN. The luminosity increase provided by the Main Injector will require upgrades beyond those implemented for the first stage (Run IIa) of the Tevatrons Run II physics program. The upgrade of the CDF calorimetry includes: 1) the replacement of the slow gas detectors on the front face of the Central Calorimeter with a faster scintillator version which has a better segmentation, and 2) the addition of timing information to both the Central and EndPlug Electromagnetic Calorimeters to filter out cosmic ray and beam related backgrounds.
Single muon triggers are crucial for the physics programmes at hadron collider experiments. To be sensitive to electroweak processes, single muon triggers with transverse momentum thresholds down to 20 GeV and dimuon triggers with even lower thresholds are required. In order to keep the rates of these triggers at an acceptable level these triggers have to be highly selective, i.e. they must have small accidental trigger rates and sharp trigger turn-on curves. The muon systems of the LHC experiments and experiments at future colliders like FCC-hh will use two muon chamber systems for the muon trigger, fast trigger chambers like RPCs with coarse spatial resolution and much slower precision chambers like drift-tube chambers with high spatial resolution. The data of the trigger chambers are used to identify the bunch crossing in which the muon was created and for a rough momentum measurement while the precise measurements of the muon trajectory by the precision chambers are ideal for an accurate muon momentum measurement. A compact muon track finding algorithm is presented, where muon track candidates are reconstructed using a binning algorithm based on a 1D Hough Transform. The algorithm has been designed and implemented on a System-On-Chip device. A hardware demonstration using Xilinx Evaluation boards ZC706 has been set-up to prove the concept. The system has demonstrated the feasibility to reconstruct muon tracks with a good angular resolution, whilst satisfying latency constraints. The demonstrated track-reconstruction system, the chosen architecture, the achievements to date and future options for such a system will be discussed.
The LHCb Experiment is preparing a detector upgrade fully exploit the flavour physics potential of the LHC. The whole detector will be read out at the full collision rate and the online event selection will be performed by a software trigger. This will increase the event yields by a facto 10 for muonic and a factor 20 for hadronic final states. Research towards the upgrade has started with the target to install the detector in 2018.