Do you want to publish a course? Click here

Influence of Pure Dephasing on Emission Spectra from Single Photon Sources

119   0   0.0 ( 0 )
 Added by Andreas Naesby
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for non-zero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for non-zero detuning. We investigate the characteristics of this intensity shifting effect and offer it as an explanation for the non-vanishing emission peaks at the cavity frequency found in recent experimental work.



rate research

Read More

Interference between independent single photons is perhaps the most fundamental interaction in quantum optics. It has become increasingly important as a tool for optical quantum information science, as one of the rudimentary quantum operations, together with photon detection, for generating entanglement between non-interacting particles. Despite this, demonstrations of large-scale photonic networks involving more than two independent sources of quantum light have been limited due to the difficulty in constructing large arrays of high-quality single photon sources. Here, we solve the key challenge, reporting a novel array of more than eighteen near-identical, low-loss, high-purity, heralded single photon sources achieved using spontaneous four-wave mixing (SFWM) on a silica chip. We verify source quality through a series of heralded Hong-Ou-Mandel experiments, and further report the experimental three-photon extension of the entire Hong-Ou-Mandel interference curves, which map out the interference landscape between three independent single photon sources for the first time.
We derive analytical formulas for the forward emission and side emission spectra of cavity-modified single-photon sources, as well as the corresponding normal-mode oscillations in the cavity quantum electrodynamics (QED) strong-coupling regime. We investigate the effects of pure dephasing, treated in the phase-diffusion model based on a Wiener-Levy process, on the emission spectra and normal-mode oscillations. We also extend our previous calculation of quantum efficiency to include the pure dephasing process. All results are obtained in the Weisskopf-Wigner approximation for an impulse-excited emitter. We find that the spectra are broadened, the depths of the normal-mode oscillations are reduced and the quantum efficiency is decreased in the presence of pure dephasing.
Reliable single photon sources constitute the basis of schemes for quantum communication and measurement based quantum computing. Solid state single photon sources based on quantum dots are convenient and versatile but the electronic transitions that generate the photons are subject to interactions with lattice vibrations. Using a microscopic model of electron-phonon interactions and a quantum master equation, we here examine phonon-induced decoherence and assess its impact on the rate of production, and indistinguishability, of single photons emitted from an optically driven quantum dot system. We find that, above a certain threshold of desired indistinguishability, it is possible to mitigate the deleterious effects of phonons by exploiting a three-level Raman process for photon production.
An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.
An optimal single-photon source should deterministically deliver one and only one photon at a time, with no trade-off between the sources efficiency and the photon indistinguishability. However, all reported solid-state sources of indistinguishable single photons had to rely on polarization filtering which reduced the efficiency by 50%, which fundamentally limited the scaling of photonic quantum technologies. Here, we overcome this final long-standing challenge by coherently driving quantum dots deterministically coupled to polarization-selective Purcell microcavities--two examples are narrowband, elliptical micropillars and broadband, elliptical Bragg gratings. A polarization-orthogonal excitation-collection scheme is designed to minimize the polarization-filtering loss under resonant excitation. We demonstrate a polarized single-photon efficiency of 0.60+/-0.02 (0.56+/-0.02), a single-photon purity of 0.975+/-0.005 (0.991+/-0.003), and an indistinguishability of 0.975+/-0.006 (0.951+/-0.005) for the micropillar (Bragg grating) device. Our work provides promising solutions for truly optimal single-photon sources combining near-unity indistinguishability and near-unity system efficiency simultaneously.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا