No Arabic abstract
An on-demand single-photon source is a key requirement for scaling many optical quantum technologies. A promising approach to realize an on-demand single-photon source is to multiplex an array of heralded single-photon sources using an active optical switching network. However, the performance of multiplexed sources is degraded by photon loss in the optical components and the non-unit detection efficiency of the heralding detectors. We provide a theoretical description of a general multiplexed single-photon source with lossy components and derive expressions for the output probabilities of single-photon emission and multi-photon contamination. We apply these expressions to three specific multiplexing source architectures and consider their tradeoffs in design and performance. To assess the effect of lossy components on near- and long-term experimental goals, we simulate the multiplexed sources when used for many-photon state generation under various amounts of component loss. We find that with a multiplexed source composed of switches with ~0.2-0.4 dB loss and high efficiency number-resolving detectors, a single-photon source capable of efficiently producing 20-40 photon states with low multi-photon contamination is possible, offering the possibility of unlocking new classes of experiments and technologies.
Detectors inherently capable of resolving photon numbers have undergone a significant development recently, and this is expected to affect multiplexed periodic single-photon sources where such detectors can find their applications. We analyze various spatially and time-multiplexed periodic single-photon source arrangements with photon-number-resolving detectors, partly to identify the cases when they outperform those with threshold detectors. We develop a full statistical description of these arrangements in order to optimize such systems with respect to maximal single-photon probability, taking into account all relevant loss mechanisms. The model is suitable for the description of all spatial and time multiplexing schemes. Our detailed analysis of symmetric spatial multiplexing identifies a particular range of loss parameters in which the use of the new type of detectors leads to an improvement. Photon number resolution opens an additional possibility for optimizing the system in that the heralding strategy can be defined in terms of actual detected photon numbers. Our results show that this kind of optimization opens an additional parameter range of improved efficiency. Moreover, this higher efficiency can be achieved by using less multiplexed units, i.e., smaller system size as compared to threshold-detector schemes. We also extend our investigation to certain time-multiplexed schemes of actual experimental relevance. We find that the highest single-photon probability is 0.907 that can be achieved by binary bulk time multiplexers using photon-number-resolving detectors.
Microring resonators are attractive for low-power frequency conversion via Bragg-scattering four-wave-mixing due to their comb-like resonance spectrum. However, conversion efficiency is limited to 50% due to the equal probability of up- and down-conversion. Here, we demonstrate how two coupled microrings enable highly directional conversion between the spectral modes of one of the rings. An extinction between up- and down-conversion of more than 40 dB is experimentally observed. Based on this method, we propose a design for on-chip multiplexed single-photon sources that allow localized frequency modes to be converted into propagating continuous-mode photon wave packets using a single operation. The key is that frequency conversion works as a switch on both spatial and spectral degrees of freedom of photons if the microring is interferometrically coupled to a bus waveguide. Our numerical results show 99% conversion efficiency into a propagating mode with a wave packet having a 90% overlap with a Gaussian for a ratio between intrinsic and coupling quality factors of 400.
Silicon-on-chip (SOI) photonic circuit is the most promising platform for scalable quantum information technology for its low loss, small footprint, CMOS-compatible and telecom communications techniques compatible. Multiple multiplexed entanglement sources include: energy-time, time-bin and polarization entangled sources based on 1-cm length single silicon nanowire, all these sources are compatible with (100GHz) dense-wave-division-multiplexing (DWDM) system. Different methods such as two photon interference pattern, Bell-Inequality and quantum state tomography are used to characterize the quality of these entangled sources. Multiple entanglements are generated over more than 5 channel pairs with high raw (net) visibilities around 97% (100%). The emission spectral brightness of these entangled sources reaches 4.2*105 /(s.nm.mW). The quality of the photon pair generated in continuous and pulse pump regimes are compared. High qualities of these multiplexed entanglement sources make them very promising to be used in future minimized quantum communication and computation systems.
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such quantum network can be realized by all fiber elements, which takes advantage of low transmission loss,low cost, scalable and mutual fiber communication techniques such as dense wavelength division multiplexing. Therefore high quality entangled photon sources based on fibers are on demanding for building up such kind of quantum network. Here we report multiplexed polarization and timebin entanglement photon sources based on dispersion shifted fiber operating at room temperature. High qualities of entanglement are characterized by using interference, Bell inequality and quantum state tomography. Simultaneous presence of entanglements in multichannel pairs of a 100GHz DWDM shows the great capacity for entanglements distribution over multi-users. Our research provides a versatile platform and moves a first step toward constructing an all fiber quantum network.
Single-photon detectors are widely used in modern quantum optics experiments and applications. Like all detectors, it is important for these devices to be accurately calibrated. A single-photon detector is calibrated by determining its detection efficiency; the standard method to measure this quantity requires comparison to another detector. Here, we suggest a method to measure the detection efficiency of a single photon detector without requiring an external reference detector. Our method is valid for individual single-photon detectors as well as multiplexed detectors, which are known to be photon number resolving. The method exploits the photon-number correlations of a nonlinear source, as well as the nonlinear loss of a single photon detector that occurs when multiple photons are detected simultaneously. We have analytically modeled multiplexed detectors and used the results to experimentally demonstrate calibration of a single photon detector without the need for an external reference detector.