Do you want to publish a course? Click here

Spectroscopy of Bright QUEST RR Lyrae Stars: Velocity Substructures toward Virgo

341   0   0.0 ( 0 )
 Added by A. Katherina Vivas
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using a sample of 43 bright (V<16.1, distance <13 kpc) RR Lyrae stars (RRLS) from the QUEST survey with spectroscopic radial velocities and metallicities, we find that several separate halo substructures contribute to the Virgo overdensity (VOD). While there is little evidence for halo substructure in the spatial distribution of these stars, their distribution in radial velocity reveals two moving groups. These results are reinforced when the sample is combined with a sample of blue horizontal branch stars that were identified in the SDSS, and the combined sample provides evidence for one additional moving group. These groups correspond to peaks in the radial velocity distribution of a sample of F type main-sequence stars that was recently observed in the same directon by SEGUE, although in one case the RRLS and F star groups may not lie at the same distance. One of the new substructures has a very narrow range in metallicity, which is more consistent with it being the debris from a destroyed globular cluster than from a dwarf galaxy. A small concentration of stars have radial velocities that are similar to the Virgo Stellar Stream (VSS) that was identified previously in a fainter sample of RRLS. Our results suggest that this feature extends to distances as short as ~12 kpc from its previous detection at ~19 kpc. None of the new groups and only one star in the sample have velocities that are consistent with membership in the leading tidal stream from the Sagittarius Dwarf Spheroidal Galaxy, which some authors have suggested is the origin of the VOD.



rate research

Read More

54 - Sonia Duffau 2005
Eighteen RR Lyrae variables (RRLs) that lie in the $12fh 4$ clump identified by the QUEST survey have been observed spectroscopically to measure their radial velocities and metal abundances. Ten blue horizontal branch (BHB) stars identified by the Sloan Digital Sky Survey (SDSS) were added to this sample. Six of the 9 stars in the densest region of the clump have a mean radial velocity in the galactic rest frame ($V_{rm gsr}$) of 99.8 and $sigma$ = 17.3 ${rm km s}^{-1}$, which is slightly smaller than the average error of the measurements. The whole sample contains 8 RRLs and 5 BHB stars that have values of $V_{rm gsr}$ suggesting membership in this stream. For 7 of these RRLs, the measurements of [Fe/H], which have an internal precision of 0.08 dex, yield $<{rm [Fe/H]}> = -1.86$ and $sigma$ = 0.40. These values suggest that the stream is a tidally disrupted dwarf spheroidal galaxy of low luminosity. Photometry from the database of the SDSS indicates that this stream covers at least 106 deg$^2$ of the sky in the constellation Virgo. The name Virgo Stellar Stream is suggested.
We use a combination of spatial distribution and radial velocity to search for halo sub-structures in a sample of 412 RR Lyrae stars (RRLS) that covers a $sim 525$ square degrees region of the Virgo Overdensity (VOD) and spans distances from the Sun from 4 to 75 kpc. With a friends-of-friends algorithm we identified six high significance groups of RRLS in phase space, which we associate mainly with the VOD and with the Sagittarius stream. Four other groups were also flagged as less significant overdensities. Three high significance and 3 lower significance groups have distances between $sim 10$ and 20 kpc, which places them with the distance range attributed by others to the VOD. The largest of these is the Virgo Stellar Stream (VSS) at 19 kpc, which has 18 RRLS, a factor of 2 increase over the number known previously. While these VOD groups are distinct according to our selection cirteria, their overlap in position and distance, and, in a few cases, similarity in radial velocity are suggestive that they may not all stem separate accretion events. Even so, the VOD appears to be caused by more than one overdensity. The Sgr stream is a very obvious feature in the background of the VOD at a mean distance of 44 kpc. Two additional high significant groups were detected at distances $>40$ kpc. Their radial velocities and locations differ from the expected path of the Sgr debris in this part of the sky, and they are likely to be remnants of other accretion events.
89 - Robert Zinn 2003
A survey of 380 sq. deg. of the sky with the 1m Schmidt telescope at the Observatorio Nacional de Llano del Halo and the QUEST camera has found 498 RR Lyrae variables lying from 4 to 60 kpc from the Sun. We describe the halo substructure revealed by these data and the results of measuring some of the stars radial velocities and metal abundances.
Sixteen RR Lyrae variables from the QUEST survey that lie in the leading arm of the tidal stream from the Sagittarius dSph galaxy have been observed spectroscopically to measure their radial velocities and metal abundances. The systemic velocities of 14 stars, which were determined by fitting a standard velocity curve to the individual measurements, have a sharply peaked distribution with a mean of 33 km/s and a standard deviation of only 25 km/s. The [Fe/H] distribution of these stars has a mean of -1.76 and a standard deviation of 0.22. These measurements are in good agreement with previous ones from smaller samples of stars. The mean metallicity is consistent with the age-metallicity relation that is observed in the main body of the Sgr dSph galaxy. The radial velocities and the distances from the Sun of these stars are compared with recent numerical simulations of the Sgr streams that assume different shapes for the dark matter halo. Models that assume a oblate halo do not fit the data as well as ones that assume a spherical or a prolate distribution. However, none of the fits are completely satisfactory. Every model fails to reproduce the long extent of the stream in right ascension (36 degr) that is seen in the region covered by the QUEST survey. Further modeling is required to see if this and the other mismatches between theory and observation can be removed by judicial choices for the model parameters or instead rule out a class of models.
Radial velocities of 2768 fundamental mode RR Lyrae stars (RRLs) toward the Southern Galactic bulge are presented, spanning the southern bulge from -8 < l < +8 and -3 < b <-6. Distances derived from the pulsation properties of the RRLs are combined with Gaia proper motions to give constraints on the orbital motions of 1389 RRLs. The majority (~75%) of the bulge RRLs have orbits consistent with these stars being permanently bound to <3.5 kpc from the Galactic Center, similar to the bar. However, unlike the bulge giants, the RRLs exhibit slower rotation and a higher velocity dispersion. The higher velocity dispersion arises almost exclusively from halo interlopers passing through the inner Galaxy. We present 82 stars with space velocities > 500 km/s and find that the majority of these high-velocity stars are halo interlopers; it is unclear if a sub-sample of these stars with similar space velocities have a common origin. Once the 25% of the sample represented by halo interlopers is cleaned, we can clearly discern two populations of bulge RRLs in the inner Galaxy. One population of RRLs is not as tightly bound to the Galaxy (but is still confined to the inner ~3.5 kpc), and is both spatially and kinematically consistent with the barred bulge. The second population is more centrally concentrated and does not trace the bar. One possible interpretation is that this population was born prior to bar formation, as its spatial location, kinematics and pulsation properties suggest, possibly from an accretion event at high redshift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا