No Arabic abstract
Radial velocities of 2768 fundamental mode RR Lyrae stars (RRLs) toward the Southern Galactic bulge are presented, spanning the southern bulge from -8 < l < +8 and -3 < b <-6. Distances derived from the pulsation properties of the RRLs are combined with Gaia proper motions to give constraints on the orbital motions of 1389 RRLs. The majority (~75%) of the bulge RRLs have orbits consistent with these stars being permanently bound to <3.5 kpc from the Galactic Center, similar to the bar. However, unlike the bulge giants, the RRLs exhibit slower rotation and a higher velocity dispersion. The higher velocity dispersion arises almost exclusively from halo interlopers passing through the inner Galaxy. We present 82 stars with space velocities > 500 km/s and find that the majority of these high-velocity stars are halo interlopers; it is unclear if a sub-sample of these stars with similar space velocities have a common origin. Once the 25% of the sample represented by halo interlopers is cleaned, we can clearly discern two populations of bulge RRLs in the inner Galaxy. One population of RRLs is not as tightly bound to the Galaxy (but is still confined to the inner ~3.5 kpc), and is both spatially and kinematically consistent with the barred bulge. The second population is more centrally concentrated and does not trace the bar. One possible interpretation is that this population was born prior to bar formation, as its spatial location, kinematics and pulsation properties suggest, possibly from an accretion event at high redshift.
Low-mass, variable, high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic centre. Wide-area surveys like APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities larger than 350 km/s. In this study we present the first abundance analysis of a low-mass, RR Lyrae star, located close to the Galactic bulge, with a space motion of ~ -400 km/s. Using medium-resolution spectra, we derive abundances (including upper limits) of 11 elements. These allow us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, combining its retrograde orbit and the derived abundances suggests that the star was accelerated from the outskirts of the inner (or even outer) halo during many-body interactions. Other possible origins include the bulge itself, or the star could be stripped from a star cluster or the Sagittarius dwarf galaxy when it merged with the Milky Way.
We present new radial velocity measurements from the Bulge Radial Velocity Assay (BRAVA), a large scale spectroscopic survey of M-type giants in the Galactic bulge/bar region. The sample of ~4500 new radial velocities, mostly in the region -10 deg < l < +10 deg and b ~ -6 deg more than doubles the existent published data set. Our new data extend our rotation curve and velocity dispersion profile to +20 deg, which is ~2.8 kpc from the Galactic Center. The new data confirm the cylindrical rotation observed at -6 deg and -8 deg, and are an excellent fit to the Shen et al. (2010) N-body bar model. We measure the strength of the TiO molecular band as a first step towards a metallicity ranking of the stellar sample, from which we confirm the presence of a vertical abundance gradient. Our survey finds no strong evidence of previously unknown kinematic streams. We also publish our complete catalog of radial velocities, photometry, TiO band strengths, and spectra, which is available at the IRSA archive: http://irsa.ipac.caltech.edu/ as well as at UCLA: http://brava.astro.ucla.edu/.
We report the first estimate of the He abundance of the population of RR Lyrae stars in the Galactic bulge. This is done by comparing the recent observational data with the latest models. We use the large samples of ab type RR Lyrae stars found by OGLE IV in the inner bulge and by the VVV survey in the outer bulge. We present the result from the new models computed by Marconi et al. (2017), showing that the minimum Period for fundamental RR Lyrae pulsators depends on the He content. By comparing these models with the observations in a Period versus effective temperature plane, we find that the bulk of the bulge ab type RR Lyrae are consistent with primordial He abundance Y=0.245, ruling out a significant He-enriched population. This work demonstrates that the He content of the bulge RR Lyrae is different from that of the bulk of the bulge population as traced by the red clump giants, that appear to be significantly more He-rich.
The VISTA Variables in the Via Lactea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR ($ZYJHK_{rm s}$) filters that at present provide photometry to a depth of $K_{rm s} sim 17.0$ mag in up to 36 epochs spanning over four years, and aim at discovering more than 10$^6$ variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile $textit{b201}$, which is centered at ($ell, b$) $sim$ ($-9^circ, -9^circ$), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. A total of 1.5 sq deg were analyzed, and we found 39 RR Lyrae stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyrae stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period--luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around $sim 8.1$ and $sim 8.5$ kpc. for either the Cardelli or Nishiyama extinction law.
Non-radial modes are excited in classical pulsators, both in Cepheids and in RR Lyrae stars. Firm evidence come from the first overtone pulsators, in which additional shorter period mode is detected with characteristic period ratio falling in between 0.60 and 0.65. In the case of first overtone Cepheids three separate sequences populated by nearly 200 stars are formed in the Petersen diagram, i.e. the diagram of period ratio versus longer period. In the case of first overtone RR Lyrae stars (RRc stars) situation is less clear. A dozen or so such stars are known which form a clump in the Petersen diagram without any obvious structure. Interestingly, all first overtone RR Lyrae stars for which precise space-borne photometry is available show the additional mode, which suggests that its excitation is common. Motivated by these results we searched for non-radial modes in the OGLE-III photometry of RRc stars from the Galactic bulge. We report the discovery of 147 stars, members of a new group of double-mode, radial-non-radial mode pulsators. They form a clear and tight sequence in the Petersen diagram, with period ratios clustering around 0.613 with a signature of possible second sequence with higher period ratio (0.631). The scatter in period ratios of the already known stars is explained as due to population effects. Judging from the results of space observations this still mysterious form of pulsation must be common among RRc stars and with our analysis of the OGLE data we just touch the tip of the iceberg.