Do you want to publish a course? Click here

Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment

270   0   0.0 ( 0 )
 Added by Laura Baudis
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

XENON10 is an experiment to directly detect weakly interacting massive particle (WIMPs), which may comprise the bulk of the non-baryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129-Xe and 131-Xe from 58.6 live-days of operation at the Laboratori Nazionali del Gran Sasso (LNGS). Based on the non-observation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of 10 GeV -2 TeV as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.



rate research

Read More

We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Analysis of $sim$450 kg$cdot$days fiducial exposure revealed a most likely signal of zero events, leading to a 90%-confidence upper limit on the pure WIMP-neutron cross-section of $sigma_n=1.8times 10^{-2}$ pb at 55 GeV/$c^2$ WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn CD nucleon-nucleon potential were used for the odd-neutron isotopes $^{129}$Xe and $^{131}$Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction is much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of $sim$2.
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with 129-Xe and 131-Xe nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV, with a minimum cross section of 3.5 x 10^{-40} cm^2 at a WIMP mass of 45 GeV, at 90% confidence level.
We report the first experimental results on spin-dependent elastic weakly interacting massive particle (WIMP) nucleon scattering from the XENON1T dark matter search experiment. The analysis uses the full ton year exposure of XENON1T to constrain the spin-dependent proton-only and neutron-only cases. No significant signal excess is observed, and a profile likelihood ratio analysis is used to set exclusion limits on the WIMP-nucleon interactions. This includes the most stringent constraint to date on the WIMP-neutron cross section, with a minimum of $6.3times10^{-42}$ cm$^2$ at 30 GeV/c${}^2$ and 90% confidence level. The results are compared with those from collider searches and used to exclude new parameter space in an isoscalar theory with an axial-vector mediator.
We present experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from the total 129.5 kg-year exposure acquired by the Large Underground Xenon experiment (LUX), operating at the Sanford Underground Research Facility in Lead, South Dakota (USA). A profile likelihood ratio analysis allows 90% CL upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of $sigma_n$ = 1.6$times 10^{-41}$ cm$^{2}$ ($sigma_p$ = 5$times 10^{-40}$ cm$^{2}$) at 35 GeV$c^{-2}$, almost a sixfold improvement over the previous LUX spin-dependent results. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
New constraints are presented on the spin-dependent WIMP-nucleon interaction from the PandaX-II experiment, using a data set corresponding to a total exposure of 3.3$times10^4$ kg-days. Assuming a standard axial-vector spin-dependent WIMP interaction with $^{129}$Xe and $^{131}$Xe nuclei, the most stringent upper limits on WIMP-neutron cross sections for WIMPs with masses above 10 GeV/c$^{2}$ are set in all dark matter direct detection experiments. The minimum upper limit of $4.1times 10^{-41}$ cm$^2$ at 90% confidence level is obtained for a WIMP mass of 40 GeV/c$^{2}$. This represents more than a factor of two improvement on the best available limits at this and higher masses. These improved cross-section limits provide more stringent constraints on the effective WIMP-proton and WIMP-neutron couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا