Do you want to publish a course? Click here

Spin-Dependent Weakly-Interacting-Massive-Particle--Nucleon Cross Section Limits from First Data of PandaX-II Experiment

74   0   0.0 ( 0 )
 Added by Yong Yang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

New constraints are presented on the spin-dependent WIMP-nucleon interaction from the PandaX-II experiment, using a data set corresponding to a total exposure of 3.3$times10^4$ kg-days. Assuming a standard axial-vector spin-dependent WIMP interaction with $^{129}$Xe and $^{131}$Xe nuclei, the most stringent upper limits on WIMP-neutron cross sections for WIMPs with masses above 10 GeV/c$^{2}$ are set in all dark matter direct detection experiments. The minimum upper limit of $4.1times 10^{-41}$ cm$^2$ at 90% confidence level is obtained for a WIMP mass of 40 GeV/c$^{2}$. This represents more than a factor of two improvement on the best available limits at this and higher masses. These improved cross-section limits provide more stringent constraints on the effective WIMP-proton and WIMP-neutron couplings.

rate research

Read More

We report new searches for the solar axions and galactic axion-like dark matter particles, using the first low-background data from PandaX-II experiment at China Jinping Underground Laboratory, corresponding to a total exposure of about $2.7times 10^4$ kg$cdot$day. No solar axion or galactic axion-like dark matter particle candidate has been identified. The upper limit on the axion-electron coupling ($g_{Ae}$) from the solar flux is found to be about $4.35 times 10^{-12}$ in mass range from $10^{-5}$ to 1 keV/$c^2$ with 90% confidence level, similar to the recent LUX result. We also report a new best limit from the $^{57}$Fe de-excitation. On the other hand, the upper limit from the galactic axions is on the order of $10^{-13}$ in the mass range from 1 keV/$c^2$ to 10 keV/$c^2$ with 90% confidence level, slightly improved compared with the LUX.
We present new experimental constraints on the WIMP-nucleon spin-dependent elastic cross-sections using data from the first science run of ZEPLIN-III, a two-phase xenon experiment searching for galactic dark matter WIMPs based at the Boulby mine. Analysis of $sim$450 kg$cdot$days fiducial exposure revealed a most likely signal of zero events, leading to a 90%-confidence upper limit on the pure WIMP-neutron cross-section of $sigma_n=1.8times 10^{-2}$ pb at 55 GeV/$c^2$ WIMP mass. Recent calculations of the nuclear spin structure based on the Bonn CD nucleon-nucleon potential were used for the odd-neutron isotopes $^{129}$Xe and $^{131}$Xe. These indicate that the sensitivity of xenon targets to the spin-dependent WIMP-proton interaction is much lower than implied by previous calculations, whereas the WIMP-neutron sensitivity is impaired only by a factor of $sim$2.
116 - H. Jiang , L. P. Jia , Q. Yue 2018
We report the first results of a light weakly interacting massive particles (WIMPs) search from the CDEX-10 experiment with a 10 kg germanium detector array immersed in liquid nitrogen at the China Jinping Underground Laboratory with a physics data size of 102.8 kg day. At an analysis threshold of 160 eVee, improved limits of 8 $times 10^{-42}$ and 3 $times 10^{-36}$ cm$^{2}$ at a 90% confidence level on spin-independent and spin-dependent WIMP-nucleon cross sections, respectively, at a WIMP mass ($m_{chi}$) of 5 GeV/${c}^2$ are achieved. The lower reach of $m_{chi}$ is extended to 2 GeV/${c}^2$.
We present PandaX-II constraints on candidate WIMP-nucleon effective interactions involving the nucleon or WIMP spin, including, in addition to standard axial spin-dependent (SD) scattering, various couplings among vector and axial currents, magnetic and electric dipole moments, and tensor interactions. The data set corresponding to a total exposure of 54-ton-days is reanalyzed to determine constraints as a function of the WIMP mass and isospin coupling. We obtain WIMP-nucleon cross section bounds of $rm 1.6 times 10^{-41} cm^2$ and $rm 9.0 times 10^{-42} cm^2$ ($90%$ c.l.) for neutron-only SD and tensor coupling, respectively, for a mass $M_mathrm{WIMP} sim {rm 40~GeV}/c^2$. The SD limits are the best currently available for $M_mathrm{WIMP} > {rm 40~GeV}/c^2$. We show that PandaX-II has reached a sensitivity sufficient to probe a variety of other candidate spin-dependent interactions at the weak scale.
We present the first experimental constraints on the spin-dependent WIMP-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of $1.4~times~10^{4}~text{kg}cdot~text{days}$ of fiducial exposure allows 90% CL upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of $sigma_n~=~9.4~times~10^{-41}~text{cm}^2$ ($sigma_p~=~2.9~times~10^{-39}~text{cm}^2$) at 33 GeV/c$^2$. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا