Do you want to publish a course? Click here

Hydrodynamic limit for asymmetric simple exclusion with accelerated boundaries

128   0   0.0 ( 0 )
 Added by Lu Xu
 Publication date 2021
  fields Physics
and research's language is English
 Authors Lu Xu




Ask ChatGPT about the research

We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional lattice. The particles can be created/annihilated at the boundaries with time-dependent rate. These boundary dynamics are properly accelerated. We prove the hydrodynamic limit of the particle density profile, under the hyperbolic space-time rescaling, evolves with the entropy solution to Burgers equation with Dirichlet boundary conditions. The boundary conditions are characterised by boundary entropy flux pair.



rate research

Read More

We study the one-dimensional asymmetric simple exclusion process on the lattice ${1,dots,N}$ with creation/annihilation at the boundaries. The boundary rates are time dependent and change on a slow time scale $N^{-a}$ with $a>0$. We prove that at the time scale $N^{1+a}$ the system evolves quasi-statically with a macroscopic density profile given by the entropy solution of the stationary Burgers equation with boundary densities changing in time, determined by the corresponding microscopic boundary rates. We consider two different types of boundary rates: the Liggett boundaries that correspond to the projection of the infinite dynamics, and the reversible boundaries, that correspond to the contact with particle reservoirs in equilibrium. The proof is based on the control of the Lax boundary entropy--entropy flux pairs and a coupling argument.
We study mixing times of the symmetric and asymmetric simple exclusion process on the segment where particles are allowed to enter and exit at the endpoints. We consider different regimes depending on the entering and exiting rates as well as on the rates in the bulk, and show that the process exhibits pre-cutoff and in some cases cutoff. Our main contribution is to study mixing times for the asymmetric simple exclusion process with open boundaries. We show that the order of the mixing time can be linear or exponential in the size of the segment depending on the choice of the boundary parameters, proving a strikingly different (and richer) behavior for the simple exclusion process with open boundaries than for the process on the closed segment. Our arguments combine coupling, second class particle and censoring techniques with current estimates. A novel idea is the use of multi-species particle arguments, where the particles only obey a partial ordering.
We obtain the exact large deviation functions of the density profile and of the current, in the non-equilibrium steady state of a one dimensional symmetric simple exclusion process coupled to boundary reservoirs with slow rates. Compared to earlier results, where rates at the boundaries are comparable to the bulk ones, we show how macroscopic fluctuations are modified when the boundary rates are slower by an order of inverse of the system length.
Consider a system of particles performing nearest neighbor random walks on the lattice $ZZ$ under hard--core interaction. The rate for a jump over a given bond is direction--independent and the inverse of the jump rates are i.i.d. random variables belonging to the domain of attraction of an $a$--stable law, $0<a<1$. This exclusion process models conduction in strongly disordered one-dimensional media. We prove that, when varying over the disorder and for a suitable slowly varying function $L$, under the super-diffusive time scaling $N^{1 + 1/alpha}L(N)$, the density profile evolves as the solution of the random equation $partial_t rho = mf L_W rho$, where $mf L_W$ is the generalized second-order differential operator $frac d{du} frac d{dW}$ in which $W$ is a double sided $a$--stable subordinator. This result follows from a quenched hydrodynamic limit in the case that the i.i.d. jump rates are replaced by a suitable array ${xi_{N,x} : xinbb Z}$ having same distribution and fulfilling an a.s. invariance principle. We also prove a law of large numbers for a tagged particle.
We construct an exclusion process with Bernoulli product invariant measure and having, in the diffusive hydrodynamic scaling, a non symmetric diffusion matrix, that can be explicitly computed. The antisymmetric part does not affect the evolution of the density but it is relevant for the evolution of the current. In particular because of that, the Ficks law is violated in the diffusive limit. Switching on a weakly external field we obtain a symmetric mobility matrix that is related just to the symmetric part of the diffusion matrix by the Einstein relation. We show that this fact is typical within a class of generalized gradient models. We consider for simplicity the model in dimension $d=2$, but a similar behavior can be also obtained in higher dimensions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا